跳轉至內容
Merck
  • Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion.

Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion.

Nature communications (2020-03-27)
R Commander, C Wei, A Sharma, J K Mouw, L J Burton, E Summerbell, D Mahboubi, R J Peterson, J Konen, W Zhou, Y Du, H Fu, M Shanmugam, A I Marcus
摘要

Phenotypic heterogeneity exists within collectively invading packs of tumor cells, suggesting that cellular subtypes cooperate to drive invasion and metastasis. Here, we take a chemical biology approach to probe cell:cell cooperation within the collective invasion pack. These data reveal metabolic heterogeneity within invasive chains, in which leader cells preferentially utilize mitochondrial respiration and trailing follower cells rely on elevated glucose uptake. We define a pyruvate dehydrogenase (PDH) dependency in leader cells that can be therapeutically exploited with the mitochondria-targeting compound alexidine dihydrochloride. In contrast, follower cells highly express glucose transporter 1 (GLUT1), which sustains an elevated level of glucose uptake required to maintain proliferation. Co-targeting of both leader and follower cells with PDH and GLUT1 inhibitors, respectively, inhibits cell growth and collective invasion. Taken together, our work reveals metabolic heterogeneity within the lung cancer collective invasion pack and provides rationale for co-targeting PDH and GLUT1 to inhibit collective invasion.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
2-脱氧-2-[(7-硝基-2,1,3-苯并恶二唑-4-基)氨基]-D-葡萄糖, ≥97% (HPLC)
Sigma-Aldrich
抗微管蛋白抗体,克隆YL1/2, clone YL1/2, Chemicon®, from rat
Sigma-Aldrich
二氯乙酸钾, 98%
Sigma-Aldrich
阿来西定 二盐酸盐, ≥95% (HPLC)