跳轉至內容
Merck
全部照片(4)

Key Documents

P5280

Sigma-Aldrich

丙酮酸钠

powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%

同義詞:

α酮基丙酸 钠盐, 2-氧代丙酸 钠盐, 丙酮酸 钠盐

登入查看組織和合約定價


About This Item

線性公式:
CH3COCOONa
CAS號碼:
分子量::
110.04
Beilstein:
3568341
EC號碼:
MDL號碼:
分類程式碼代碼:
12352207
PubChem物質ID:
NACRES:
NA.71

產品線

BioReagent

品質等級

化驗

≥99%

形狀

powder

技術

cell culture | insect: suitable
cell culture | mammalian: suitable

mp

>300 °C (lit.)

溶解度

H2O: 100 mg/mL

密度

1.78 at 20 °C

應用

metabolomics

儲存溫度

2-8°C

SMILES 字串

[Na+].CC(=O)C([O-])=O

InChI

1S/C3H4O3.Na/c1-2(4)3(5)6;/h1H3,(H,5,6);/q;+1/p-1

InChI 密鑰

DAEPDZWVDSPTHF-UHFFFAOYSA-M

尋找類似的產品? 前往 產品比較指南

一般說明

丙酮酸钠,来源丙酮酸,在细胞生物学、细胞培养和生物化学研究中应用广泛。 在糖酵解中葡萄糖被转化为丙酮同时大量产生ATP(三磷酸腺苷)。作为糖酵解途径的最终产物,丙酮酸是各种代谢途径(包括糖代谢)的中间体。在糖酵解中细胞自然地合成丙酮酸钠作为中间代谢产物,它不一定是所有细胞培养过程的必需补充剂。 但是,如果细胞是在添加丙酮酸钠的培养基中培养,继续使用丙酮酸钠时一种明智的做法,因为没有它细胞生长可能减缓。丙酮酸钠常被加入细胞培养基配方中,以增强肉汤和培养基的营养,通过提供容易获取的碳水化合物能量来源和葡萄糖来提高细胞生存率。它常被添加至生长培养基中,特别是用于快速增殖的细胞,如肿瘤细胞。此外,它参与氨基酸代谢并启动Kreb循环。细胞容易以丙酮酸钠作为碳源,进行能量生产和关键代谢途径,消除了对葡萄糖或氨基酸的生物合成的需求。由于无法将葡萄糖或氨基酸转化为丙酮酸,某些细胞系需要在培养基中补充丙酮酸。此外,丙酮酸钠可作为自由基清除剂,有效清除氧自由基(ROS),并有助于细胞健康和活力。

應用

丙酮酸钠可用于:
  • 培养 MCF7ρ0(人乳腺癌细胞系)细胞作为母细胞
  • 作为细胞外流量(XF)检测培养基添加剂,培养细胞用于测定耗氧率(OCR)
  • 作为Eagle最低必需培养基添加剂,培养乳腺癌细胞(MCF-7)
  • 作为杜氏改良Eagle培养基(DMEM)类培养基和改良Eagle培养基(MEM)-α,用于睾丸细胞培养,评估培养基组分体外维持SSC的作用

生化/生理作用

丙酮酸钠具有抗氧化性能和抗氧自由基的保护作用。丙酮酸是糖酵解的一部分,也是许多代谢途径的中间产物。它可被转化为乙酰辅酶A并进入TCA循环。
丙酮酸钠可用作培养基和肉汤组分。外源给药后,对缺血再灌注损伤、出血性休克和败血性休克的各种动物模型具有保护作用。

特點和優勢

  • 经过细胞培养和昆虫细胞培养验证

  • 用途广泛,适用于多种实验室和研究应用
  • 用于细胞生物学和生物化学研究的BioReagent级琥珀酸钠
  • 针对哺乳动物和昆虫细胞培养应用进行测试

其他說明

如需了解生化试剂系列的更多信息,请填写此表

同類產品

產品號碼
描述
訂價

相關產品

產品號碼
描述
訂價

象形圖

Exclamation mark

訊號詞

Warning

危險聲明

危險分類

Eye Irrit. 2 - Skin Sens. 1B

儲存類別代碼

13 - Non Combustible Solids

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, type N95 (US)


分析證明 (COA)

輸入產品批次/批號來搜索 分析證明 (COA)。在產品’s標籤上找到批次和批號,寫有 ‘Lot’或‘Batch’.。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Rekin's Janky et al.
PLoS computational biology, 10(7), e1003731-e1003731 (2014-07-25)
Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis.
Wei Yang et al.
Nature communications, 5, 3818-3818 (2014-05-03)
Polycomb Repressive Complex 1 and histone H2A ubiquitination (ubH2A) contribute to embryonic stem cell (ESC) pluripotency by repressing lineage-specific gene expression. However, whether active deubiquitination co-regulates ubH2A levels in ESCs and during differentiation is not known. Here we report that
Lotta Tengroth et al.
PloS one, 9(6), e98239-e98239 (2014-06-03)
The human nasal epithelium is an important physical barrier, and a part of the innate immune defense that protect against pathogens. The epithelial cells recognize microbial components by pattern-recognition receptors (PRRs), and thereby trigger an immune response. Even though TLR3
Philipp Müller et al.
Science translational medicine, 7(315), 315ra188-315ra188 (2015-11-27)
Targeted drug delivery with antibody-drug conjugates such as the HER2-directed ado-trastuzumab emtansine (T-DM1) has emerged as a powerful strategy for cancer therapy. We show that T-DM1 is particularly effective in eliciting antitumor immunity in patients with early breast cancer (WSG-ADAPT
Jonathan B Grimm et al.
Nature methods, 12(3), 244-250 (2015-01-20)
Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires

文章

We presents an article about the Warburg effect, and how it is the enhanced conversion of glucose to lactate observed in tumor cells, even in the presence of normal levels of oxygen. Otto Heinrich Warburg demonstrated in 1924 that cancer cells show an increased dependence on glycolysis to meet their energy needs, regardless of whether they were well-oxygenated or not.

Information on fatty acid synthesis and metabolism in cancer cells. Learn how proliferatively active cells require fatty acids for functions such as membrane generation, protein modification, and bioenergetic requirements. These fatty acids are derived either from dietary sources or are synthesized by the cell.

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務