跳轉至內容
Merck
全部照片(1)

重要文件

925217

Sigma-Aldrich

TissueFab® - low endotoxin GelMA-UV bioink

0.2 μm filtered, suitable for 3D bioprinting applications

同義詞:

Bioink, GelMA, Gelatin methacrylamide, Gelatin methacrylate, Gelatin methacryloyl

登入查看組織和合約定價


About This Item

分類程式碼代碼:
12352201
NACRES:
NA.23

品質等級

無菌

0.2 μm filtered

形狀

viscous liquid (to gel)

尺寸

10 mL

雜質

≤5 CFU/g

Bioburden

(Fungal)
≤5 CFU/g Bioburden (Aerobic)
≤50 EU/mL Endotoxin

顏色

pale yellow to colorless

pH值

6.5-7.5

黏度

2-20 cP

應用

3D bioprinting

儲存溫度

2-8°C

一般說明

Gelatin methacryloyl (GelMA) is a polymerizable hydrogel material derived from natural extracellular matrix (ECM) components. Due to its low cost, abundance, and retention of natural cell binding motifs, gelatin has become a highly sought material for tissue engineering applications.

The addition of photocrosslinkable methacrylamide functional groups in GelMA allows the synthesis of biocompatible, biodegradable, and non-immunogenic hydrogels that are stable in biologically relevant conditions and promote cell adhesion, spreading, and proliferation.

Temporal and spatial control of the crosslinking reaction can be obtained by adjusting the degree of functionalization and polymerization conditions, allowing for the fabrication of hydrogels with unique patterns, 3D structures, and morphologies.

應用

Gelatin methacrylate based bioinks have been used in the following bioprinting applications:

  • osteogenic,
  • chondrogenic ,
  • hepatic ,
  • adipogenic ,
  • vasculogenic ,
  • epithelial ,
  • endothelial ,
  • cardiac valve ,
  • skin ,
  • tumors

特點和優勢

  • Ready-to-use formulation optimized for high printing fidelity and cell viability, eliminating the lengthy bioink formulation development process
  • Step-by-step protocols developed and tested by MilliporeSigma 3D Bioprinting Scientists, no prior 3D bioprinting experience neede
  • Suitable for different extrusion-based 3D bioprinter model
  • Methacrylamide functional group can also be used to control the hydrogel physical parameters such as pore size, degradation rate, and swell ratio.

法律資訊

TISSUEFAB is a registered trademark of Merck KGaA, Darmstadt, Germany

儲存類別代碼

10 - Combustible liquids

水污染物質分類(WGK)

WGK 3


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our 文件 section.

如果您需要協助,請聯絡 客戶支援

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Y Shi et al.
Biomedical materials (Bristol, England), 13(3), 035008-035008 (2018-01-09)
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper
Wanjun Liu et al.
Advanced healthcare materials, 6(12) (2017-05-04)
Bioprinting is an emerging technique for the fabrication of 3D cell-laden constructs. However, the progress for generating a 3D complex physiological microenvironment has been hampered by a lack of advanced cell-responsive bioinks that enable bioprinting with high structural fidelity, particularly
B Duan et al.
Acta biomaterialia, 10(5), 1836-1846 (2013-12-18)
Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs
Birgit Huber et al.
Journal of biomaterials applications, 30(6), 699-710 (2015-05-29)
In vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components
Wanjun Liu et al.
Biofabrication, 10(2), 024102-024102 (2017-11-28)
Bioinks with shear-thinning/rapid solidification properties and strong mechanics are usually needed for the bioprinting of three-dimensional (3D) cell-laden constructs. As such, it remains challenging to generate soft constructs from bioinks at low concentrations that are favorable for cellular activities. Herein

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務