推薦產品
形狀
powder
品質等級
反應適用性
reagent type: catalyst
core: zirconium
粒徑
<10 μm
密度
5.52 g/mL at 25 °C (lit.)
SMILES 字串
[Ba++].[O-][Zr]([O-])=O
InChI
1S/Ba.3O.Zr/q+2;;2*-1;
InChI 密鑰
DQBAOWPVHRWLJC-UHFFFAOYSA-N
尋找類似的產品? 前往 產品比較指南
一般說明
應用
- Interface Diffusion and Compatibility of (Ba,La)FeO(3-δ) Perovskite Electrodes in Contact with Barium Zirconate and Ceria.: This study explores the interface diffusion and compatibility of perovskite electrodes in solid oxide fuel cells (SOFCs), demonstrating the stability of barium zirconate as an electrolyte material (Chiara et al., 2023).
- Composite Electrolyte Used for Low Temperature SOFCs to Work at 390°C.: Researchers developed a composite electrolyte incorporating barium zirconate for use in low-temperature SOFCs, highlighting its potential in improving fuel cell performance (Liu et al., 2023).
- In Situ Nanoscale Dynamics Imaging in a Proton-Conducting Solid Oxide for Protonic Ceramic Fuel Cells.: This article presents in situ imaging techniques to analyze the dynamics of proton conduction in barium zirconate, offering insights into its role in protonic ceramic fuel cells (Gorobtsov et al., 2022).
- Proton Conductive BaZr(0.8-x) Ce(x) Y(0.2) O(3-δ): Influence of NiO Sintering Additive on Crystal Structure, Hydration Behavior, and Conduction Properties.: Investigating the impact of NiO additives, this study focuses on the proton conductivity and structural properties of yttrium-doped barium zirconate (Han et al., 2021).
- Inkjet Printed Y-Substituted Barium Zirconate Layers as Electrolyte Membrane for Thin Film Electrochemical Devices.: The paper describes the application of inkjet printing techniques to create thin film electrolyte membranes using yttrium-doped barium zirconate for advanced electrochemical devices (Schneller et al., 2019).
訊號詞
Warning
危險聲明
危險分類
Acute Tox. 4 Inhalation - Acute Tox. 4 Oral
儲存類別代碼
11 - Combustible Solids
水污染物質分類(WGK)
WGK 1
閃點(°F)
Not applicable
閃點(°C)
Not applicable
個人防護裝備
dust mask type N95 (US), Eyeshields, Gloves
客戶也查看了
文章
Perovskite-phase metal oxides exhibit a variety of interesting physical properties which include ferroelectric, dielectric, pyroelectric, and piezoelectric behavior.
Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.
A significant limiting factor for wearable electronics and wireless sensors is the finite amount of energy that can be stored in on-board batteries.
Among various ceramics, one-dimensional (1-D) piezoelectric ceramics have attracted significant scientific attention for use in energy harvesting.
我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.
聯絡技術服務