跳轉至內容
Merck
全部照片(1)

重要文件

201146

Sigma-Aldrich

六氟磷酸锂

98%

同義詞:

磷氟化锂

登入查看組織和合約定價


About This Item

線性公式:
LiPF6
CAS號碼:
分子量::
151.91
EC號碼:
MDL號碼:
分類程式碼代碼:
12352302
PubChem物質ID:
NACRES:
NA.23

等級

for analytical purposes

化驗

98%

形狀

powder

mp

200 °C (dec.) (lit.)

溶解度

H2O: slightly soluble(lit.)

密度

1.5 g/mL (lit.)

SMILES 字串

[Li+].F[P-](F)(F)(F)(F)F

InChI

1S/F6P.Li/c1-7(2,3,4,5)6;/q-1;+1

InChI 密鑰

AXPLOJNSKRXQPA-UHFFFAOYSA-N

尋找類似的產品? 前往 產品比較指南

一般說明

六氟磷酸锂是一种广泛应用于锂离子电池的电解质盐。

應用

The main use of LiPF6 is as an electrolyte salt in lithium-ion batteries. It plays a crucial role in the electrolyte solution, enhancing overall ionic conductivity and electrochemical stability. This makes it vital for R&D applications in high-performance batteries in consumer electronics, electric vehicles, and energy storage systems. LiPF6 assists in forming a stable SEI layer on the anode, which is essential for the durability and reliability of lithium-ion batteries. This layer helps prevent degradation and improves battery safety. LiPF6 is useful in R&D applications for the production of thin films and coatings for various electronic and optical applications, enhancing the performance and stability of these materials. It can be used as a catalyst or catalyst component in various organic synthesis reactions, particularly those requiring a strong Lewis acid.

特點和優勢

  • 它可以在电极中形成合适的 SEI 膜,特别是在阴极中
  • 它可以对阳极集流器进行钝化以防止其溶解
  • 宽的电稳定性窗口
  • 在各种溶剂中具有优异的溶解度和高导电性
  • 环保

訊號詞

Danger

危險聲明

危險分類

Acute Tox. 3 Oral - Eye Dam. 1 - Skin Corr. 1A - STOT RE 1 Inhalation

標靶器官

Bone,Teeth

儲存類別代碼

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

水污染物質分類(WGK)

WGK 2

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

M D S Lekgoathi et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 153, 651-654 (2015-10-11)
The structure of LiPF6 has been probed using Raman scattering as well as pXRD and the results are compared and contrasted. The conventional Bragg angle scattering pXRD determines that dry LiPF6 crystallizes in a trigonal structure (Space Group R-3 (148))
Kewei Liu et al.
ACS nano, 9(6), 6041-6049 (2015-06-06)
The two-dimensional single-layer and few-layered graphene exhibit many attractive properties such as large specific surface area and high charge carrier mobility. However, graphene sheets tend to stack together and form aggregates, which do not possess the desirable properties associated with
Shijia Zhao et al.
Nanoscale, 7(5), 1984-1993 (2014-12-30)
Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced
Jiangfeng Qian et al.
Nature communications, 6, 6362-6362 (2015-02-24)
Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the

文章

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務