Skip to Content
Merck
All Photos(1)

Key Documents

45504

Supelco

Fluoranthene

analytical standard

Synonym(s):

Benzo[j,k]fluorene

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C16H10
CAS Number:
Molecular Weight:
202.25
Beilstein:
1907918
EC Number:
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

analytical standard

Quality Level

shelf life

limited shelf life, expiry date on the label

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

bp

384 °C (lit.)

mp

105-110 °C (lit.)

application(s)

environmental

format

neat

SMILES string

c1ccc-2c(c1)-c3cccc4cccc-2c34

InChI

1S/C16H10/c1-2-8-13-12(7-1)14-9-3-5-11-6-4-10-15(13)16(11)14/h1-10H

InChI key

GVEPBJHOBDJJJI-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Fluoranthene (FA) belongs to the class of polycyclic aromatic hydrocarbons (PAHs), which are typically generated due to the incomplete burning of organic materials in the presence of oxygen in insufficient quantities. FA is regarded as an environmental indicator and is mainly used in simulation studies. It is also used in the development of a fluorescent chemosensor for the determination of explosive nitroaromatic compounds.

Application

FA may be used as an analytical standard for the determination of the analyte in food samples, oils, fats, and environmental samples by various chromatography techniques.
Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

Pictograms

Exclamation markEnvironment

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point(F)

388.4 °F - closed cup

Flash Point(C)

198.0 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 2

1 of 2

N Venkatramaiah et al.
Chemical communications (Cambridge, England), 48(41), 5007-5009 (2012-04-19)
A novel fluoranthene based fluorescent chemosensor for the detection of picric acid (PA) at the parts per billion (ppb) level was evaluated. Static fluorescence quenching was the dominant process by intercalative π-π interaction between fluoranthene (S(1)) and nitroaromatics.
L D Gratz et al.
Journal of hazardous materials, 74(1-2), 37-46 (2000-04-27)
For laboratories involved in polycyclic aromatic hydrocarbon (PAH) analyses in environmental samples, it is very useful to participate in interlaboratory comparison studies which provide a mechanism for comparing analytical methods. This is particularly important when PAH analyses are routinely done
A P Rodrigues et al.
The Science of the total environment, 443, 454-463 (2012-12-12)
Fluoranthene (FLU) is a priority polycyclic aromatic hydrocarbon (PAH) commonly detected in estuarine sediments, water and biota. Despite this, information on FLU detection, accumulation and effects on marine crustaceans is scarce. This work investigated the accumulation of FLU in Carcinus
Stěpán Zezulka et al.
Aquatic toxicology (Amsterdam, Netherlands), 140-141, 37-47 (2013-06-12)
Polycyclic aromatic hydrocarbons (PAHs) represent one of the major groups of organic contaminants in the aquatic environment. Duckweed (Lemna minor L.) is a common aquatic plant widely used in phytotoxicity tests for xenobiotic substances. The goal of this study was
Amanda K Gevertz et al.
Environmental toxicology and chemistry, 31(5), 1129-1135 (2012-03-13)
Within Lake Tahoe (CA/NV), USA, multiple environmental stressors are present that can affect both native and nonnative fish species. Stressors include natural ultraviolet radiation (UVR) and polycyclic aromatic hydrocarbons (PAHs). Many PAHs, such as fluoranthene (FLU) are phototoxic to aquatic

Protocols

US EPA Method 610 describes the analysis of polynuclear aromatic hydrocarbons (commonly referred to as PAHs or PNAs) by both HPLC and GC.

HPLC Analysis of PAHs on SUPELCOSIL™ LC-PAH

GC Analysis of Polynuclear Aromatic Hydrocarbons (PAHs) in Salmon on SPB®-608 (20 m x 0.18 mm I.D., 0.18 µm) after QuEChERS Cleanup using Supel™ QuE Z-Sep, Fast GC Analysis

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service