Skip to Content
Merck
All Photos(2)

Key Documents

900856

Sigma-Aldrich

1-Butyl-3-methylimidazolium chloride

greener alternative

≥99%

Synonym(s):

1-Methyl-3-butylimidazolium chloride, N-Butyl-N′-methylimidazolium chloride, BMIMCl

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C8H15ClN2
CAS Number:
Molecular Weight:
174.67
Beilstein:
6449277
MDL number:
UNSPSC Code:
12352200
NACRES:
NA.23

Quality Level

Assay

≥99%

form

solid

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

~70 °C

application(s)

battery manufacturing

greener alternative category

SMILES string

[Cl-].CCCCn1cc[n+](C)c1

InChI

1S/C8H15N2.ClH/c1-3-4-5-10-7-6-9(2)8-10;/h6-8H,3-5H2,1-2H3;1H/q+1;/p-1

InChI key

FHDQNOXQSTVAIC-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

General description

1-Butyl-3-methylimidazolium chloride is a class of electrolytic materials that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency.
Click here for more information.

Application

Ionic liquids (ILs) are molten salts with melting points lower than 100 °C. They usually consist of pair of organic cation and anion. ILs exhibit unique properties such as non-volatility, high thermal stability, and high ionic conductivity and find applications as electrolytes in lithium/sodium ion batteries and dye-sensitized solar cells. They are also used as media for synthesis of conducting polymers and intercalation electrode materials.

Caution

Store under Nitrogen.

Pictograms

Skull and crossbonesEnvironment

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Aquatic Chronic 2 - Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

377.6 °F - (External MSDS)

Flash Point(C)

192 °C - (External MSDS)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

María Uriburu-Gray et al.
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-21)
Previous studies have demonstrated that the mesoporosity of carbon material obtained by the Starbon® process from starch-formed by amylose and amylopectin can be tuned by controlling this ratio (the higher the amylose, the higher the mesoporosity). This study shows that
Nurul Atikah Mohd Ishak et al.
Carbohydrate polymers, 246, 116553-116553 (2020-08-05)
Catalytic ionic liquid hydrolysis of cellulosic material have been considered as a green and highly efficient dissolution process. However, application of a pre-treatment process, i.e; ultrasonication enhances the hydrolysis of cellulose in ionic liquid by providing mechanical force. In this
Cycloaddition of carbon dioxide to butyl glycidyl ether using imidazolium salt ionic liquid as a catalyst
Yu JI, et al.
Korean Journal of Chemical Engineering, 27, 446-451 (2010)
Siti Hawatulaila Baharuddin et al.
Chemosphere, 249, 126125-126125 (2020-02-15)
The application of chemical dispersants in marine oil spill remediation is comprehensively reported across the globe. But, the augmented toxicity and poor biodegradability of reported chemical dispersants have created necessity for their replacement with the bio-based green dispersants. Therefore, in
Ionic liquids and their solid-state analogues as materials for energy generation and storage.
MacFarlane DR, et al.
Nature Reviews. Materials, 1, 15005-15005 (2016)

Articles

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Here, we present a short review of ionic liquid electrolytes used in state-of-the-art rechargeable batteries including high performance and low-cost aluminum batteries, non-flammable Li-based batteries, and high-cycling and stable dual-graphite batteries. We also outline the key issues explored so as to identify the future direction of IL development.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service