推荐产品
化驗
99.8% trace metals basis
形狀
powder
反應適用性
reagent type: catalyst
core: iron
粒徑
−325 mesh
mp
450 °C (lit.)
應用
battery manufacturing
InChI
1S/Fe.S2/c;1-2/q+2;-2
InChI 密鑰
NIFIFKQPDTWWGU-UHFFFAOYSA-N
應用
二硫化铁作为光伏材料 (1) 和锂离子电池正极材料 (2) 引起了人们的极大兴趣。还研究了二硫化铁作为环境污染物封存的潜在材料 (3)。
儲存類別代碼
11 - Combustible Solids
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
其他客户在看
Environmental microbiology, 15(8), 2228-2237 (2013-02-22)
Río Tinto (Huelva, southwestern Spain) is an extreme environment with a remarkably constant acidic pH and a high concentration of heavy metals, conditions generated by the metabolic activity of chemolithotrophic microorganisms thriving in the rich complex sulfides of the Iberian
Environmental science and pollution research international, 20(11), 7509-7519 (2013-04-17)
Acid mine drainage in the Iberian Pyrite Belt is probably the worst case in the world of surface water pollution associated with mining of sulphide mineral deposits. The Iberian Pyrite Belt is located in SW Iberian Peninsula, and it has
Proteomics, 13(7), 1133-1144 (2013-01-16)
Acidithiobacillus ferrooxidans is a chemolithoautotrophic, mesophilic Gram-negative bacterium able to oxidize ferrous iron, sulfur, and metal sulfides. It forms monolayer biofilms where extracellular polymeric substances are essential for cell attachment and metal sulfide leaching. High-throughput proteomics has been applied to
Antonie van Leeuwenhoek, 103(4), 905-919 (2013-01-08)
In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to
Water research, 47(13), 4391-4402 (2013-06-15)
Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门