Przejdź do zawartości
Merck
  • Biocompatibility of poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel particles in RAW 264.7 macrophage and MG-63 osteoblast cell lines.

Biocompatibility of poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel particles in RAW 264.7 macrophage and MG-63 osteoblast cell lines.

Journal of biomedical materials research. Part A (2008-12-17)
Eugene S Yim, Betty Zhao, David Myung, Lampros C Kourtis, Curtis W Frank, Dennis Carter, Robert L Smith, Stuart B Goodman
ABSTRAKT

Hydrogel polymers comprise a novel category of synthetic materials being investigated for use in cartilage replacement. One candidate compound, a poly(ethylene glycol)/poly(acrylic acid) (PEG/PAA) interpenetrating polymer network (IPN), was developed for use in corneal prostheses and was recently engineered for potential orthopedic use. The current study examined the effects of particles of this compound on two cell lines (MG-63 osteoblast-like cells and RAW 264.7 macrophages) over a 48-h time course. To mimic the effects of wear debris, particles of the compound were generated and introduced to the cells. In the MG-63 cell line, the particles had no significant effect on cell viability measured by PicoGreen assay and trypan blue exclusion. In contrast, a significant decrease in cell viability was detected in the Raw 264.7 macrophage cells at the final timepoint with the highest concentration of hydrogel (3.0% v:v). A concentration- and time-dependent increase in TNF-alpha release characteristic of other known biocompatible materials was also detected in RAW 264.7 cells, but nitric oxide and interleukin (IL)-1beta showed no response. In addition, the MG-63 cell line demonstrated no IL-6 response. Particles of the PEG/PAA IPN thus seem to stimulate biological responses similar to those in other biocompatible materials.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Lipopolysaccharides from Escherichia coli O127:B8, purified by gel-filtration chromatography