Przejdź do zawartości
Merck

LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma.

Oncotarget (2016-12-15)
Julia Dräger, Katja Simon-Keller, Tobias Pukrop, Florian Klemm, Jörg Wilting, Carsten Sticht, Kai Dittmann, Matthias Schulz, Ivo Leuschner, Alexander Marx, Heidi Hahn
ABSTRAKT

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas β-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
MISSION® esiRNA, targeting human LEF1