Przejdź do zawartości
Merck
  • (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology.

(S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology.

Pain (2016-03-12)
Aubin Moutal, Lindsey A Chew, Xiaofang Yang, Yue Wang, Seul Ki Yeon, Edwin Telemi, Seeneen Meroueh, Ki Duk Park, Raghuraman Shrinivasan, Kerry B Gilbraith, Chaoling Qu, Jennifer Y Xie, Amol Patwardhan, Todd W Vanderah, May Khanna, Frank Porreca, Rajesh Khanna
ABSTRAKT

Chronic pain affects the life of millions of people. Current treatments have deleterious side effects. We have advanced a strategy for targeting protein interactions which regulate the N-type voltage-gated calcium (CaV2.2) channel as an alternative to direct channel block. Peptides uncoupling CaV2.2 interactions with the axonal collapsin response mediator protein 2 (CRMP2) were antinociceptive without effects on memory, depression, and reward/addiction. A search for small molecules that could recapitulate uncoupling of the CaV2.2-CRMP2 interaction identified (S)-lacosamide [(S)-LCM], the inactive enantiomer of the Food and Drug Administration-approved antiepileptic drug (R)-lacosamide [(R)-LCM, Vimpat]. We show that (S)-LCM, but not (R)-LCM, inhibits CRMP2 phosphorylation by cyclin dependent kinase 5, a step necessary for driving CaV2.2 activity, in sensory neurons. (S)-lacosamide inhibited depolarization-induced Ca influx with a low micromolar IC50. Voltage-clamp electrophysiology experiments demonstrated a commensurate reduction in Ca currents in sensory neurons after an acute application of (S)-LCM. Using constellation pharmacology, a recently described high content phenotypic screening platform for functional fingerprinting of neurons that uses subtype-selective pharmacological agents to elucidate cell-specific combinations (constellations) of key signaling proteins that define specific cell types, we investigated if (S)-LCM preferentially acts on certain types of neurons. (S)-lacosamide decreased the dorsal root ganglion neurons responding to mustard oil, and increased the number of cells responding to menthol. Finally, (S)-LCM reversed thermal hypersensitivity and mechanical allodynia in a model of postoperative pain, and 2 models of neuropathic pain. Thus, using (S)-LCM to inhibit CRMP2 phosphorylation is a novel and efficient strategy to treat pain, which works by targeting specific sensory neuron populations.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-CRMP2 antibody produced in rabbit, ~1.0 mg/mL, affinity isolated antibody, buffered aqueous solution