Przejdź do zawartości
Merck

The influence of zinc chloride and zinc oxide nanoparticles on air-time survival in freshwater mussels.

Comparative biochemistry and physiology. Toxicology & pharmacology : CBP (2015-05-11)
François Gagné, Joëlle Auclair, Caroline Peyrot, Kevin J Wilkinson
ABSTRAKT

The purpose of this study was to determine the cumulative effects of exposure to either dissolved zinc or nanozinc oxide (nanoZnO) and air-time survival in freshwater mussels. Mussels were exposed to each forms of zinc for 96h then placed in air to determine survival time. A sub-group of mussels before and after 7days of exposure to air were kept aside for the determination of the following biomarkers: arachidonate-dependent cyclooxygenase (COX) and peroxidase (inflammation and oxidative stress), lipid metabolism (total lipids, esterases activity, HO-glycerol, acetyl CoA and phospholipase A2) and lipid damage (lipid peroxidation [LPO]). The results showed that air-time survival was decreased from a mean value of 18.5days to a mean value of 12days in mussels exposed to 2.5mg/L of nanoZnO although it was not lethal based on shell opening at concentrations below 50mg/L after 96h. In mussels exposed to zinc only, the median lethal concentration was estimated at 16mg/L (10-25 95% CI). The air-time survival did not significantly change in mussels exposed to the same concentration of dissolved Zn. Significant weight losses were observed at 0.5mg/L of nanoZnO and at 2.5mg/L for dissolved zinc chloride, and were also significantly correlated with air-time survival (r=0.53; p<0.01). Air exposure significantly increased COX activity in control mussels and in mussels exposed to 0.5mg/L of nanoZnO and zinc chloride. The data also suggested fatty acid breakdown and β-oxidation. Mussels exposed to contaminants are more susceptible to prolonged exposure to air during low water levels.