Przejdź do zawartości
Merck

Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding.

eLife (2014-09-23)
Maria V Gelfand, Nellwyn Hagan, Aleksandra Tata, Won-Jong Oh, Baptiste Lacoste, Kyu-Tae Kang, Justyna Kopycinska, Joyce Bischoff, Jia-Huai Wang, Chenghua Gu
ABSTRAKT

During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. In this study, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1(VEGF-)). Nrp1(VEGF-) mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1-targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-Actin, α-Smooth Muscle - Cy3 antibody, Mouse monoclonal, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, ascites fluid, clone B-5-1-2
Sigma-Aldrich
DAPI, for nucleic acid staining