Przejdź do zawartości
Merck

Human induced pluripotent stem cell-derived salivary gland organoids model SARS-CoV-2 infection and replication.

Nature cell biology (2022-10-18)
Junichi Tanaka, Hidenobu Senpuku, Miho Ogawa, Rika Yasuhara, Shintaro Ohnuma, Koki Takamatsu, Takashi Watanabe, Yo Mabuchi, Shiro Nakamura, Shoko Ishida, Tomohiko Sadaoka, Takashi Takaki, Tatsuo Shirota, Toshikazu Shimane, Tomio Inoue, Takayoshi Sakai, Munemasa Mori, Takashi Tsuji, Ichiro Saito, Kenji Mishima
ABSTRAKT

Salivary glands act as virus reservoirs in various infectious diseases and have been reported to be targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the mechanisms underlying infection and replication in salivary glands are still enigmatic due to the lack of proper in vitro models. Here, we show that human induced salivary glands (hiSGs) generated from human induced pluripotent stem cells can be infected with SARS-CoV-2. The hiSGs exhibit properties similar to those of embryonic salivary glands and are a valuable tool for the functional analysis of genes during development. Orthotopically transplanted hiSGs can be engrafted at a recipient site in mice and show a mature phenotype. In addition, we confirm SARS-CoV-2 infection and replication in hiSGs. SARS-CoV-2 derived from saliva in asymptomatic individuals may participate in the spread of the virus. hiSGs may be a promising model for investigating the role of salivary glands as a virus reservoir.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Monoclonal Anti-Cytokeratin, pan (Mixture) antibody produced in mouse, clone C-11+PCK-26+CY-90+KS-1A3+M20+A53-B/A2, ascites fluid
Sigma-Aldrich
Anti-Sox9 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Monoclonal Anti-AMY1A antibody produced in mouse, clone 2D4, purified immunoglobulin, buffered aqueous solution