Przejdź do zawartości
Merck

Autosomal recessive Bethlem myopathy: A clinical, genetic and functional study.

Neuromuscular disorders : NMD (2019-09-01)
Filomena Caria, Matilde Cescon, Francesca Gualandi, Anna Pichiecchio, Rachele Rossi, Paola Rimessi, Stefano Cotti Piccinelli, Serena Gallo Cassarino, Ilaria Gregorio, Anna Galvagni, Alessandra Ferlini, Alessandro Padovani, Paolo Bonaldo, Massimiliano Filosto
ABSTRAKT

Bethlem myopathy represents the milder form of the spectrum of Collagen VI-related dystrophies, which are characterized by a clinical continuum between the two extremities, the Bethlem myopathy and the Ullrich congenital muscular dystrophy, and include less defined intermediate phenotypes. Bethlem myopathy is mainly an autosomal dominant disorder and the causing mutations occur in the COL6A genes encoding for the α1 (COL6A1), α2 (COL6A2) and α3 (COL6A3) chains. However, few cases of recessive inheritance have been also reported. We here describe clinical, genetic and functional findings in a recessive Bethlem myopathy family harbouring two novel pathogenic mutations in the COL6A2 gene. Two adult siblings presented with muscle weakness and wasting, elbows and Achilles tendon retractions, lumbar hyperlordosis, waddling gait and positive Gowers' sign. Muscle biopsy showed a dystrophic pattern. Molecular analysis of the COL6A2 gene revealed the novel paternally-inherited nonsense p.Gln889* mutation and the maternally-inherited p.Pro260_Lys261insProPro small insertion. Fibroblast studies in both affected patients showed the concomitant reduction in the amount of normal Collagen VI (p.Gln889*) and impairment of Collagen VI secretion and assembly (p.Pro260_Lys261insProPro). Each of the two variants behave as a recessive mutation as shown by the asymptomatic heterozygous parents, while their concomitant effects determined a relatively mild Bethlem myopathy phenotype. This study confirms the occurrence of recessive inherited Bethlem myopathy and expands the genetic heterogeneity of this group of muscle diseases.