Przejdź do zawartości
Merck

Gab2 promotes cancer stem cell like properties and metastatic growth of ovarian cancer via downregulation of miR-200c.

Experimental cell research (2019-06-14)
Zenghui Fang, Tong Li, Wanzhou Chen, Du Wu, Yaqian Qin, Min Liu, Guang Wu, Licai He, Hongzhi Li, Haihua Gu
ABSTRAKT

Scaffolding adaptor Gab2 is overexpressed in a subset of high-grade ovarian cancer. Our published work shows that Gab2 via PI3K enhances migratory behaviors and epithelial to mesenchymal transition (EMT) features of ovarian cancer cells in vitro. However, it is still unclear how Gab2/PI3K pathway reuglates EMT characteristics and whether Gab2 promotes the growth of ovarian cancer stem cell (CSC)-like population and metastatic growth. In this study, we examined the effects of Gab2 expression on CSC-like cell growth using Aldefluor and tumorshpere assays commonly used for assessing ovarian cancer cells with CSC properties. Gab2 overexpression increased the number of ALDH+ cells and tumorsphere formation in two different ovarian cancer cell lines OVCAR5 and OVCAR8, whereas knockdown of Gab2 decreased the number of ALDH+ cells and tumorsphere formation in Caov-3 cells. Furthermore, Gab2 promoted metastatic tumor growth of OVCAR5 in nude mice. Mechanistically, we uncovered that Gab2 via PI3K specifically inhibited miR-200c expression. miR-200c downregulation contributed to the Gab2-enhanced cell migratory behaviors, EMT properties, and the expansion of ALDH+ cells and tumorspheres. Furthermore, Gab2 promoted CD44 expression and cell migration/invasion through miR-200c downregulation. Our findings support a model that Gab2-PI3K pathway via miR-200c downregulation promotes CD44 expression, EMT characteristics, and CSC-like cell growth. Therapies involving miR-200c or targeting CD44 should help treat ovarian cancer with high Gab2 expression.