Przejdź do zawartości
Merck
  • Thermo-Reversible Hybrid Gels Formed from the Combination of Isotactic Polystyrene and [Fe(II) (4-Octadecyl-1,2,4-Triazole)3(ClO4)2]n Metallo-Organic Polymer: Thermal and Viscoelastic Properties.

Thermo-Reversible Hybrid Gels Formed from the Combination of Isotactic Polystyrene and [Fe(II) (4-Octadecyl-1,2,4-Triazole)3(ClO4)2]n Metallo-Organic Polymer: Thermal and Viscoelastic Properties.

Polymers (2019-06-05)
Coro Echeverría, Miguel Rubio, Daniel López
ABSTRAKT

Nano-sized one-dimensional metallo-organic polymers, characterized by the phenomenon of spin transition, are excellent candidates for advanced technological applications such as optical sensors, storage, and information processing devices. However, the main drawback of this type of polymers is their fragile mechanical properties, which hinders its processing and handling, and makes their practical use unfeasible. To overcome this problem, in this work, hybrid thermo-reversible gels are synthesized by combination of a metallo-organic polymer and isotactic polystyrene (iPS) in cis-decaline. A detailed investigation of the thermal and viscoelastic properties of the hybrid gels, in terms of iPS and metallo-organic polymer concentration is performed by means of differential scanning calorimetry and oscillatory rheology, respectively. From the analysis of the thermal properties, three transitions have been determined upon heating: Monotectic transition of the iPS gel, melting of the iPS gel, and melting of the metal-organic polymer gel, which suggest that the gels of the two polymers are formed independently in the hybrid gel, as long as the two polymers are in concentrations above the corresponding critical gelation concentrations. Results regarding viscoelastic properties and morphology confirmed that hybrid gels consisted of an interpenetrated network of polymer gels, formed by iPS and metallo-organic poymer gels growing independently.