Przejdź do zawartości
Merck

Parathyroid Hormone Remodels Bone Transitional Vessels and the Leptin Receptor-Positive Pericyte Network in Mice.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2019-03-29)
Robin Caire, Bernard Roche, Tiphanie Picot, Carmen-Mariana Aanei, Zhiguo He, Lydia Campos, Mireille Thomas, Luc Malaval, Laurence Vico, Marie-Hélène Lafage-Proust
ABSTRAKT

Intermittent parathyroid hormone (iPTH) is anti-osteoporotic and affects bone vessels. Transitional capillaries close to the bone surface, which express both endomucin (Edm) and CD31, bear leptin receptor-expressing (LepR) perivascular cells that may differentiate into osteoblasts. Increased numbers of type H endothelial cells (THEC; ie, Edmhi /CD31hi cells assessed by flow cytometry, FACS) are associated with higher bone formation in young mice. We hypothesized that iPTH administration impacts transitional vessels by expanding THECs. Four-month-old C57/Bl6J female mice were injected with PTH 1-84 (100 μg/kg/d) or saline (CT) for 7 or 14 days. We quantified LepR+ , CD31+ , Edm+ cells and THECs by FACS in hindlimb bone marrow, and Edm/LepR double immunolabelings on tibia cryosections. Additionally, we analyzed bone mRNA expression of 87 angiogenesis-related genes in mice treated with either intermittent or continuous PTH (iPTH/cPTH) or saline (CT) for 7, 14, and 28 days. iPTH dramatically decreased the percentage of THECs by 78% and 90% at days 7 and 14, respectively, and of LepR+ cells at day 14 (-46%) versus CT. Immunolabeling quantification showed that the intracortical Edm+ -vessel density increased at day 14 under iPTH. In the bone marrow, perivascular LepR+ cells, connected to each other via a dendrite network, were sparser under iPTH at day 14 (-58%) versus CT. iPTH decreased LepR+ cell coverage of transitional vessels only (-51%), whereas the number of LepR+ cells not attached to vessels increased in the endocortical area only (+ 49%). Transcriptomic analyses showed that iPTH consistently upregulated PEDF, Collagen-18α1, and TIMP-1 mRNA expression compared with CT and cPTH. Finally, iPTH increased immunolabeling of endostatin, a Collagen-18 domain that can be cleaved and become antiangiogenic, in both endocortical (79%) and peritrabecular transitional microvessels at day 14. Our results show that iPTH specifically remodels transitional vessels and suggest that it promotes LepR+ cell mobilization from these vessels close to the bone surface. © 2019 American Society for Bone and Mineral Research.