Przejdź do zawartości
Merck

STAT3 is a serine kinase target in T lymphocytes. Interleukin 2 and T cell antigen receptor signals converge upon serine 727.

The Journal of biological chemistry (1997-09-26)
J Ng, D Cantrell
ABSTRAKT

Interleukin 2 (IL-2) induces tyrosine phosphorylation of STATs 3 and 5 (signal transducer and activator of transcription). We now show that IL-2 regulation of STAT3 proteins in T cells is a complex response involving activation of two forms of STAT3: 90-kDa STAT3alpha and an 83-kDa carboxyl-terminal truncated STAT3beta. The phosphorylation of STAT proteins on serine residues is also required for competent STAT transcription. A critical serine phosphorylation site in STAT3alpha is at position 727. In this study we have produced an antisera specific for STAT3alpha proteins phosphorylated on serine 727 and used this to monitor the phosphorylation of this residue during T lymphocyte activation. Our results show that phosphorylation of STAT3alpha on serine 727 is not constitutive in quiescent T cells but can be induced by the cytokine IL-2. Interestingly, triggering of the T cell antigen receptor complex or activation of protein kinase C with phorbol esters also induces phosphorylation of serine 727 but without simultaneously inducing STAT3 tyrosine phosphorylation or DNA binding. Hence, the present results show that STAT3 serine phosphorylation can be regulated independently of the tyrosine phosphorylation of this molecule. IL-2 and T cell antigen receptor complex induction of STAT3alpha serine 727 phosphorylation is dependent on the activity of the MEK/ERK pathway. Previous studies have identified H-7-sensitive kinase pathways that regulate STAT3 DNA binding. We show that H-7-sensitive pathways regulate STAT3 DNA binding in T cells. Nevertheless, we show that H-7-sensitive kinases do not regulate STAT3 tyrosine phosphorylation or phosphorylation of serine 727. These results thus show that STAT3 proteins are targets for multiple kinase pathways in T cells and can integrate signals from both cytokine receptors and antigen receptors.