Skip to Content
Merck
All Photos(1)

Key Documents

65906

Sigma-Aldrich

Phalloidin–Atto 647N

BioReagent, suitable for fluorescence, ≥80% (HPLC)

Synonym(s):

Atto 647N, Atto 647N-Phalloidin

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12171501
NACRES:
NA.32

product line

BioReagent

Quality Level

Assay

≥80% (HPLC)

manufacturer/tradename

ATTO-TEC GmbH

λ

in methanol

UV absorption

λ: 640-646 nm Amax

suitability

suitable for fluorescence

detection method

fluorometric

storage temp.

−20°C

General description

Phalloidin–Atto 647N is a new fluorescentlabel targeting the red spectral region. Atto 647N is a cationic dye, and postcoupling, it carries a net electrical charge of +1.Like most Atto labels, the absorption andfluorescence of Atto 647N are independent of pH between 2-11. Atto 647N issupplied in the form of a mixture containing two isomers having identicalfluorescence and absorption properties. Atto labels have rigid structures thatdo not show any cis-trans-isomerization.

Application

Phalloidin–Atto 647Nis designed to be used for labelling DNA, RNA, or proteins. Fluorescentconjugates of phalloidin are used to label actin filaments for histologicalapplications. Some structural features of phalloidin are required for thebinding to actin.

Features and Benefits

Characteristic features of the Phalloidin Atto488 are:
  1. StrongAbsorption.
  2. HighFluorescence quantum yield.
  3. HighPhotostability.
  4. MinimalTriplet formation.
  5. GoodSolubility.
  6. Excellent Ozone Resistance.

Legal Information

This product is for Research use only. In case of intended commercialization, please contact the IP-holder (ATTO-TEC GmbH, Germany) for licensing.

Not finding the right product?  

Try our Product Selector Tool.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 1 Inhalation - Acute Tox. 2 Dermal - Acute Tox. 2 Oral

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Dagmar A Brüggemann et al.
International journal of molecular sciences, 9(8), 1472-1488 (2009-03-28)
Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play
Georgios Trichas et al.
BMC biology, 6, 40-40 (2008-09-17)
Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry
Catherine Pfefferli et al.
Nature communications, 8, 15151-15151 (2017-05-04)
The existence of common mechanisms regulating organ regeneration is an intriguing concept. Here we report on a regulatory element that is transiently activated during heart and fin regeneration in zebrafish. This element contains a ctgfa upstream sequence, called careg, which
Inbar Schlachet et al.
ACS applied materials & interfaces, 11(24), 21360-21371 (2019-05-28)
Intranasal administration of nano-drug-delivery systems emerged as an appealing strategy to surpass the blood-brain barrier and thus increase drug bioavailability in the central nervous system. However, a systematic study of the effect of the structural properties of the nanoparticles on
Ceniz Zihni et al.
Nature cell biology, 19(9), 1049-1060 (2017-08-22)
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service