918334
High-performance silicon anode
100 nm silicon particles in crosslinked conducting polyanaline matrix
Synonym(s):
100nm Si, 100nm SiReversible Si, Anode grade, Doped polyaniline, Nano-Si/PANi composite, Si encapsulated in 3D crosslinked polyaniline, Silicon nano particle
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Looking for similar products? Visit Product Comparison Guide
Application
Silicon is a most promising next generation lithium ion battery electrode material but it suffers poor cyclability due to the volume expansion that results in loss of electrical contact and unstable SEI.
This Si composite product is made by encapsulating nano-Si particles in the 3D cross-linked conductive polymer framework. It not only allows fast electrical and ionic transport, but also provides free space to allow giant volume expansion. This Si composite provides a ready-to-use electrochemically active nano-Si anode that would increase the capacity of conventional lithium ion battery, and improve the cycle-life performance of Si-based anodes.
This Si composite product is made by encapsulating nano-Si particles in the 3D cross-linked conductive polymer framework. It not only allows fast electrical and ionic transport, but also provides free space to allow giant volume expansion. This Si composite provides a ready-to-use electrochemically active nano-Si anode that would increase the capacity of conventional lithium ion battery, and improve the cycle-life performance of Si-based anodes.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Nano letters, 17(3), 1906-1914 (2017-02-14)
Controlling architecture of electrode composites is of particular importance to optimize both electronic and ionic conduction within the entire electrode and improve the dispersion of active particles, thus achieving the best energy delivery from a battery. Electrodes based on conventional
Nano letters, 13(7), 3414-3419 (2013-06-22)
Silicon is considered one of the most promising anode materials for high-performance Li-ion batteries due to its 4200 mAh/g theoretical specific capacity, relative abundance, low cost, and environmental benignity. However, silicon experiences a dramatic volume change (∼300%) during full charge/discharge
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service