348864
Titanium
wire, diam. 0.5 mm, 99.99% trace metals basis
About This Item
Recommended Products
Quality Level
Assay
99.99% trace metals basis
form
wire
autoignition temp.
860 °F
resistivity
42.0 μΩ-cm, 20°C
diam.
0.5 mm
bp
3287 °C (lit.)
mp
1660 °C (lit.)
density
4.5 g/mL at 25 °C (lit.)
SMILES string
[Ti]
InChI
1S/Ti
InChI key
RTAQQCXQSZGOHL-UHFFFAOYSA-N
Application
- Application and features of titanium for the aerospace industry: This article discusses the use of titanium in aerospace applications, highlighting its high strength-to-weight ratio and corrosion resistance, which are also critical in biomedical applications (Inagaki et al., 2014).
- Opportunities and issues in the application of titanium alloys for aerospace components: This paper explores the engineering applications of titanium alloys, focusing on their performance in high-stress environments, which can translate to material science innovations (Williams & Boyer, 2020).
- Titanium and titanium alloy applications in medicine: Discusses the applications of titanium in the medical field, particularly in implants due to its biocompatibility and strength, relevant to drug discovery and medical device fabrication (Jackson et al., 2016).
- Titanium in biomedical applications—properties and fabrication: This review covers the properties of titanium that make it suitable for biomedical applications, including its use in prosthetics and implants, which is crucial for both material science and medical research (Jackson et al., 2016).
- Titanium: An overview of resources and production methods: Provides a comprehensive overview of titanium sourcing and production techniques, essential for understanding material properties and applications in various industries (El Khalloufi et al., 2021).
Quantity
Storage Class Code
11 - Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
Biomedical implants are essentially foreign substances within the human body that must survive many years’ exposure to demanding mechanical and physiological conditions. Despite these challenges, metal implants have been widely used to substitute for or rebuild hard tissues such as bones and teeth.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service