추천 제품
설명
Silver content : 75 wt%
Solvent : Diethylene Glycol Mono Butyl Ether (DGBE)
Surface Tension : 28 dyn/cm (Pendant Drop)
양식
paste
입자 크기
50-70 nm (by Lumisizer™)
90-120 nm (by Lumisizer™)
점도
50,000-100,000 cP (Shear Rate: 1 s-1
250cP - 450 cP (Shear Rate: 1000 s-1))
density
2.85-3.3
저장 온도
15-25°C
애플리케이션
This Ag ink product is a conductive high viscous ink based on single-crystal silver nanoparticles in an organic solvent, has been designed for LIFT (Laser Induced Forward Transfer) digital printing and laser sintering.
The ink offers:
Fit for:
LIFT digital printing
Additive electronic manufacturing
Printed electronics: RFID, FPD, Sensors
Laser induced forward transfer printing (LIFT) is a non-contact, nozzle-free, one step, direct laser writing process.
LIFT can operate under atmospheric conditions, is compatible with low laser fluences, allows the printing of organic and inorganic materials as well as biological elements. The printing process can take place from both liquid and solid phases. It further has a high lateral resolution only defined by the laser spot size. It is a method compatible with inorganic semiconductor sensor fabrication, OLED fabrication and bio printing.
The ink offers:
- Uniform and reproducible donor layer with low drying speed
- Stable accurate jetting in different types of laser systems, wide working window of jetting parameters
- High speed printing (20-50kHz), allowing high throughput
- Narrow patterning on plastic and glass substrates (line width ∼50 μm, height ∼0.5 μm, spacing ∼50 μm)
- Laser sintering of LIFT printed pattern, providing good electrical properties
Fit for:
LIFT digital printing
Additive electronic manufacturing
Printed electronics: RFID, FPD, Sensors
Laser induced forward transfer printing (LIFT) is a non-contact, nozzle-free, one step, direct laser writing process.
LIFT can operate under atmospheric conditions, is compatible with low laser fluences, allows the printing of organic and inorganic materials as well as biological elements. The printing process can take place from both liquid and solid phases. It further has a high lateral resolution only defined by the laser spot size. It is a method compatible with inorganic semiconductor sensor fabrication, OLED fabrication and bio printing.
기타 정보
Resistivity (4PP): After laser sintering* ≤ 8 μΩ·cm (≤ 5 bulk) for LIFT printed line (∼1-2 μm thick) on plastic substrate
*Parameters should be optimized depending on line geometry and substrate
*Parameters should be optimized depending on line geometry and substrate
저장 및 안정성
Keep container tightly closed. Store at room temperature, do not heat above 60 °C and do not freeze.
법적 정보
Lumisizer is a trademark of LUM GmbH
신호어
Warning
유해 및 위험 성명서
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2
Storage Class Code
10 - Combustible liquids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
가장 최신 버전 중 하나를 선택하세요:
이미 열람한 고객
Laser-induced forward transfer from healing silver paste films printing
Applied Physics Letters, 113(22), 221601/1-221601/5 (2018)
Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films
Additive Manufacturing, 24, 391-399 (2018)
Letters in applied microbiology, 67(6), 544-549 (2018-09-18)
Recently, it was shown that laser-induced forward transfer (LIFT) technology and the laser engineering of microbial systems (LEMS) technique (based on LIFT method) are effective for isolation of micro-organisms from different complex substrates. These techniques frequently utilize Au as an
문서
Professor Tokito and Professor Takeda share their new materials, device architecture design principles, and performance optimization protocols for printed and solution-processed, low-cost, highly flexible, organic electronic devices.
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.