콘텐츠로 건너뛰기
Merck
모든 사진(1)

주요 문서

900801

Sigma-Aldrich

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

≥99%, H2O ≤500 ppm

동의어(들):

1-Ethyl-3-methyl-1-H-imidazolium bis(trifluoromethansulfonyl)imide, EMIM BTI, EMIM TFSI, EMIMIm

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
C8H11F6N3O4S2
CAS Number:
Molecular Weight:
391.31
MDL number:
UNSPSC 코드:
12352111
NACRES:
NA.23

Quality Level

분석

≥99%

형태

liquid

구성

H2O, ≤500 ppm

불순물

≤500 ppm H2O

mp

≥−15 °C (lit.)

density

1.5236 g/cm3

응용 분야

battery manufacturing

SMILES string

CCn1cc[n+](C)c1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F

InChI

1S/C6H11N2.C2F6NO4S2/c1-3-8-5-4-7(2)6-8;3-1(4,5)14(10,11)9-15(12,13)2(6,7)8/h4-6H,3H2,1-2H3;/q+1;-1

InChI key

LRESCJAINPKJTO-UHFFFAOYSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a class of electrolytic materials that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.

애플리케이션

Ionic liquids (ILs) are molten salts with melting points lower than 100 °C. They usually consist of pair of organic cation and anion. ILs exhibit unique properties such as non-volatility, high thermal stability, and high ionic conductivity and find applications as electrolytes in lithium/sodium ion batteries and dye-sensitized solar cells. They are also used as media for synthesis of conducting polymers and intercalation electrode materials.

픽토그램

Skull and crossbones

신호어

Danger

유해 및 위험 성명서

예방조치 성명서

Hazard Classifications

Acute Tox. 3 Oral

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Ionic liquids and their solid-state analogues as materials for energy generation and storage.
MacFarlane DR, et al.
Nature Reviews. Materials, 1, 15005-15005 (2016)
Dandan Han et al.
Molecules (Basel, Switzerland), 15(4), 2405-2426 (2010-04-30)
Ionic liquids (ILs) have been applied in different areas of separation, such as ionic liquid supported membranes, as mobile phase additives and surface-bonded stationary phases in chromatography separations and as the extraction solvent in sample preparations, because they can be
Masayoshi Watanabe et al.
Chemical reviews, 117(10), 7190-7239 (2017-01-14)
Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially
The Li-ion rechargeable battery: a perspective
Goodenough JB and Park K
Journal of the American Chemical Society, 135(4), 1167-1176 (2013)
Electrodes with high power and high capacity for rechargeable lithium batteries
Kang K, et al.
Science, 311(5763), 977-980 (2006)

문서

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Here, we present a short review of ionic liquid electrolytes used in state-of-the-art rechargeable batteries including high performance and low-cost aluminum batteries, non-flammable Li-based batteries, and high-cycling and stable dual-graphite batteries. We also outline the key issues explored so as to identify the future direction of IL development.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.