콘텐츠로 건너뛰기
Merck
모든 사진(3)

Key Documents

518018

Sigma-Aldrich

Lithium iodide

greener alternative

99.9% trace metals basis

동의어(들):

Lithium(1+)iodide

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
LiI
CAS Number:
Molecular Weight:
133.85
EC Number:
MDL number:
UNSPSC 코드:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

분석

99.9% trace metals basis

형태

powder

환경친화적 대안 제품 특성

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

불순물

≤1500.0 ppm Trace Metal Analysis

mp

446 °C (lit.)

density

3.49 g/mL at 25 °C (lit.)

환경친화적 대안 카테고리

SMILES string

[Li+].[I-]

InChI

1S/HI.Li/h1H;/q;+1/p-1

InChI key

HSZCZNFXUDYRKD-UHFFFAOYSA-M

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Lithium iodide is widely used as an electrolyte additivein dye-sensitized solar cells and Li-S batteries, as it enables long cyclelife. It is also used as a phosphor for neutron detection.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

애플리케이션

Lithium iodide(LiI)can be used as an electrolyte additive:

  • To prepare biodegradable polymer electrolytes.Rice starch complexed with LiI shows enhanced ionic conductivity as theaddition of LiI increases the number of mobile charge carriers.
  • For Li-S batteries. LiIforms a protective coating on the surface of both negative and positiveelectrodes and prevents the dissolution of polysulfides on the cathode sidewhich significantly enhances cell rate performance.
It can also be used to prepare Li-basedscintillators with enhanced thermal neutron detection efficiency.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

dust mask type N95 (US), Eyeshields, Gloves


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Feixiang Wu et al.
Advanced materials (Deerfield Beach, Fla.), 27(1), 101-108 (2014-11-05)
Lithium Iodide (LiI) is reported as a promising electrolyte additive for lithium-sulfur batteries. It induces formation of Li-ion-permeable protective coatings on both positive and negative electrodes, which prevent the dissolution of polysulfides on the cathode and reduction of polysulfides on
Seon-Joo Choi et al.
ACS applied materials & interfaces, 10(37), 31404-31412 (2018-08-28)
All-solid-state lithium batteries (ASSLBs) based on sulfide solid electrolytes (SEs) have received great attention because of the high ionic conductivity of the SEs, intrinsic thermal safety, and higher energy density achievable with a Li metal anode. However, studies on practical
Jianjian Lin et al.
Scientific reports, 4, 5769-5769 (2014-08-30)
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties.
Yu-il Kang et al.
ChemSusChem, 8(22), 3799-3804 (2015-10-17)
Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes.
Jung-Che Tsai et al.
Chemistry, an Asian journal, 10(9), 1932-1939 (2015-07-15)
Mesoporous cobalt sulfide nanotube arrays on FTO-coated glass were synthesized by combining three simple technologies: the selective etching of ZnO sacrificial templates, mesoporous Co3 O4 formation from cobalt-chelated chitosan, and ion-exchange reaction (IER). The mesoporous Co3 O4 nanotubes composed of

문서

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Lithium-Ion Battery Performance: Dependence on Material Synthesis and Post‑Treatment Methods

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.