콘텐츠로 건너뛰기
Merck
모든 사진(3)

Key Documents

283215

Sigma-Aldrich

Poly(allylamine hydrochloride)

average Mw ~17,500 (GPC vs. PEG std.)

동의어(들):

PAA HCl, PAH

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
[CH2CH(CH2NH2 · HCl)]n
CAS Number:
EC Number:
MDL number:
UNSPSC 코드:
12162002
PubChem Substance ID:
NACRES:
NA.23

형태

solid

Quality Level

분자량

average Mw ~17,500 (GPC vs. PEG std.)

SMILES string

Cl.NCC=C

InChI

1S/C3H7N/c1-2-3-4/h2H,1,3-4H2

InChI key

VVJKKWFAADXIJK-UHFFFAOYSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Poly(allylamine hydrochloride) (PAH) is a water-soluble weak-base and a biodegradable polymer.

애플리케이션

Poly(allylamine hydrochloride) can be used as a starting material to prepare:
  • Chitosan/PAH polymer blend films by solution casting technique. These films can be employed in injectable drug delivery systems and tissue generation.
  • Cross-linked amino-modified graphene oxide for the removal of Cr(IV) from aqueous solutions.
  • Polyelectrolyte multilayers(PEMs) by the layer-by-layer method. These PEMs can be used to prepare controlled drug delivery systems and coatings with controlled cell adhesion properties.
Used to make redox hydrogel-modified electrodes for measuring enzyme responses.

특징 및 장점

  • Excellent environmental stability
  • Water-soluble
  • Low cost

픽토그램

Exclamation mark

신호어

Warning

유해 및 위험 성명서

Hazard Classifications

Acute Tox. 4 Oral - Skin Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Jingguo Li et al.
Chemistry, an Asian journal, 8(2), 385-391 (2012-12-12)
Multimodal imaging and simultaneous therapy is highly desirable because it can provide complementary information from each imaging modality for accurate diagnosis and, at the same time, afford an imaging-guided focused tumor therapy. In this study, indocyanine green (ICG), a near-infrared
Yiyao Liu et al.
Expert opinion on drug delivery, 9(10), 1197-1207 (2012-09-27)
Technologies to increase tissue vascularity are critically important to the fields of tissue engineering and cardiovascular medicine. Angiogenic factors, like VEGF, have been widely investigated to induce vascular endothelial cell proliferation and angiogenesis for establishing a vascular network. However, effective
L Minati et al.
International journal of pharmaceutics, 438(1-2), 45-52 (2012-09-11)
Gold nanoparticles functionalized with doxorubicin and stabilized with multilayers of degradable polyelectrolyte were allowed to age in aqueous medium in vitro in order to show the possibility of drug release in cellular environment. The chemico-physical characteristics of the nanoparticles are
Ya Wang et al.
Macromolecular bioscience, 12(10), 1321-1325 (2012-09-12)
Fluorescent-magnetic-biotargeting multifunctional microcapsules (FMBMMs) are designed and fabricated via layer-by-layer assembly. It is found that the arginine-glycine-aspartate-modified FMBMMs were capable of sensitively detecting and efficiently isolating approximately 80% target cancer cells within 20 min. More importantly, FMBMMs present a general
Bing Wang et al.
Macromolecular bioscience, 12(11), 1534-1545 (2012-09-26)
The mechanism of the cellular uptake of polyelectrolyte microcapsules and its influences on the functions and toxicity of human SMCs are explored. The covalently assembled poly(allylamine hydrochloride)/glutaraldehyde microcapsules are easily ingested by SMCs mainly through macropinosis and caveolae-mediated endocytosis pathways.

문서

Our research impacts on the hydrogen energy economy through the development of “smart” nanofilms for the protection of metal hydrides against air and moisture, while permitting release of hydrogen gas through these semi permeable nanofilms.

Layer-by-Layer (LbL) Assembly, A "Gentle Yet Flexible" Method Toward Functional Biomaterials

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.