コンテンツへスキップ
Merck
  • Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres.

Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres.

Acta biomaterialia (2020-10-13)
Anna A Gryadunova, Elizaveta V Koudan, Sergey A Rodionov, F D A S Pereira, Nina Yu Meteleva, Vladimir A Kasyanov, Vladislav A Parfenov, Alexey V Kovalev, Yusef D Khesuani, Vladimir A Mironov, Elena A Bulanova
要旨

Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates. Noc treatment affected spheroids spreading but not the fusion and surprisingly enhanced their stiffness. Vimentin intermediate filaments (VIFs) reorganization affected CSs spreading only. The analysis of all three cytoskeleton systems contribution to spheroids intrinsic properties was performed for the first time.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
リン酸緩衝生理食塩水, tablet
Sigma-Aldrich
サイトカラシンD, from Zygosporium mansonii, ≥98% (TLC and HPLC), powder
Sigma-Aldrich
パラホルムアルデヒド, powder, 95%
Sigma-Aldrich
N,N-ジメチルホルムアミド, ACS reagent, ≥99.8%