Skip to Content
Merck
  • Human amniotic fluid stem cells: neural differentiation in vitro and in vivo.

Human amniotic fluid stem cells: neural differentiation in vitro and in vivo.

Cell and tissue research (2014-05-03)
Tullia Maraldi, Laura Bertoni, Massimo Riccio, Manuela Zavatti, Gianluca Carnevale, Elisa Resca, Marianna Guida, Francesca Beretti, Giovanni B La Sala, Anto De Pol
ABSTRACT

The successful integration of stem cells after their implantation into the brain has become a central issue in modern neuroscience. In this study, we test the neural differentiation potential of c-Kit(+)/Oct-4(+) human amniotic fluid stem cells (hAFSCs) in vitro and their survival and integration in vivo. hAFSCs were induced towards neural differentiation and specific markers (GFAP, β-III tubulin, CNPase, MAP2, NeuN, synapsines, S100, PMP22) were detected by immunofluorescence and Western blot analysis. Glial proteins were expressed as early as 2 weeks after the initial differentiation stimulus, whereas neuronal markers started to appear from the third week of differentiation under culturing conditions of high cell density. This timeline suggested that glial cells possessed a promoting role in the differentiation of hAFSCs towards a neuronal fate. hAFSCs were then implanted into the lateral ventricle of the brain of 1-day-old rats, since neuronal development occurs up to 1 month after birth in this animal model. Our data showed that hAFSCs survived for up to 6 weeks post-implantation, were integrated into various areas of the central nervous system and migrated away from the graft giving rise to mature neurons and oligodendrocytes. We conclude that hAFSCs are able to differentiate and integrate into nervous tissue during development in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Retinoic acid, ≥98% (HPLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide, JIS special grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, SAJ first grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.0%, suitable for absorption spectrum analysis
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5%