Skip to Content
Merck
  • Characterizing the diversity of active bacteria in soil by comprehensive stable isotope probing of DNA and RNA with H218 O.

Characterizing the diversity of active bacteria in soil by comprehensive stable isotope probing of DNA and RNA with H218 O.

MicrobiologyOpen (2015-02-05)
Elizabeth A Rettedal, Volker S Brözel
ABSTRACT

Current limitations in culture-based methods have lead to a reliance on culture-independent approaches, based principally on the comparative analysis of primary semantides such as ribosomal gene sequences. DNA can be remarkably stable in some environments, so its presence does not indicate live bacteria, but extracted ribosomal RNA (rRNA) has previously been viewed as an indicator of active cells. Stable isotope probing (SIP) involves the incorporation of heavy isotopes into newly synthesized nucleic acids, and can be used to separate newly synthesized from existing DNA or rRNA. H218 O is currently the only potential universal bacterial substrate suitable for SIP of entire bacterial communities. The aim of our work was to compare soil bacterial community composition as revealed by total versus SIP-labeled DNA and rRNA. Soil was supplemented with H218 O and after 38 days the DNA and RNA were co-extracted. Heavy nucleic acids were separated out by CsCl and CsTFA density centrifugation. The 16S rRNA gene pools were characterized by DGGE and pyrosequencing, and the sequence results analyzed using mothur. The majority of DNA (~60%) and RNA (~75%) from the microcosms incubated with H218 O were labeled by the isotope. The analysis indicated that total and active members of the same type of nucleic acid represented similar community structures, which suggested that most dominant OTUs in the total nucleic acid extracts contained active members. It also supported that H218 O was an effective universal label for SIP for both DNA and RNA. DNA and RNA-derived diversity was dissimilar. RNA from this soil more comprehensively recovered bacterial richness than DNA because the most abundant OTUs were less numerous in RNA than DNA-derived community data, and dominant OTU pools didn't mask rare OTUs as much in RNA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water-18O, 99 atom % 18O
Sigma-Aldrich
Water-18O, (for PET), 97 atom % 18O