Skip to Content
Merck
All Photos(3)

Key Documents

Safety Information

D4288

Sigma-Aldrich

Digalacturonic acid

≥85% (HPLC)

Synonym(s):

α-D-GalA-(1→4)-D-GalA

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C12H18O13
CAS Number:
Molecular Weight:
370.26
MDL number:
UNSPSC Code:
12352201
PubChem Substance ID:
NACRES:
NA.25

Pricing and availability is not currently available.

biological source

synthetic (organic)

Quality Level

Assay

≥85% (HPLC)

form

powder

color

white to off-white

solubility

water: 50 mg/mL, clear, colorless to faintly yellow

storage temp.

−20°C

SMILES string

OC(C=O)C(O)C(OC1OC(C(O)C(O)C1O)C(O)=O)C(O)C(O)=O

InChI

1S/C12H18O13/c13-1-2(14)3(15)8(7(19)10(20)21)24-12-6(18)4(16)5(17)9(25-12)11(22)23/h1-9,12,14-19H,(H,20,21)(H,22,23)

InChI key

SYBQLSSECRIKMJ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Digalacturonic acid (DGA), derived in vivo from pectin catabolism, is used for the co-crystallization of enzymes such as proteinase K. It is used in galacturonic acid metabolism research as a substrate to identify, differentiate and characterized endo- and exopolygalacturonase(s) and gluconase(s). DGA is used to study the transport of oligogalacturonides by systems such as the TogMNAB ABC transporter.

Other Notes

To gain a comprehensive understanding of our extensive range of Disaccharides for your research, we encourage you to visit our Carbohydrates Category page.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

D4288-BULK:
D4288-10MG:
D4288-25MG:
D4288-100MG:
D4288-VAR:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Need A Sample COA?

This is a sample Certificate of Analysis (COA) and may not represent a recently manufactured lot of this specific product.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Lisha Zhang et al.
Fungal genetics and biology : FG & B, 48(10), 990-997 (2011-06-21)
D-galacturonic acid is the most abundant component of pectin, one of the major polysaccharide constituents of plant cell walls. Galacturonic acid potentially is an important carbon source for microorganisms living on (decaying) plant material. A catabolic pathway was proposed in
V E Miamin et al.
Genetika, 40(9), 1187-1193 (2004-11-24)
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. The inability of mutant cells to utilize these substrates was caused by
V Valmeekam et al.
Molecular plant-microbe interactions : MPMI, 14(6), 816-820 (2001-06-02)
The negative regulatory protein ExuR in Erwinia chrysanthemi regulates expression of the galacturonate uptake (exuT) and utilization (uxaA, uxaB, uxaC) genes. We cloned and determined the nucleotide sequence of the exuR gene from E. chrysanthemi EC16. Analysis of the deduced
N Hugouvieux-Cotte-Pattat et al.
Molecular microbiology, 41(5), 1113-1123 (2001-09-14)
The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the
S Gognies et al.
Journal of industrial microbiology & biotechnology, 39(7), 1023-1029 (2012-03-01)
In Saccharomyces cerevisiae, an endopolygalacturonase encoded by the PGL1 gene catalyzes the random hydrolysis of the α-1,4 glycosidic linkages in polygalacturonic acid. To study the regulation of the PGL1 gene, we constructed a reporter vector containing the lacZ gene under

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service