Passa al contenuto
Merck

Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2014-11-08)
Min Sik Choi, Tomohiro Nakamura, Seung-Je Cho, Xuemei Han, Emily A Holland, Jing Qu, Gregory A Petsko, John R Yates, Robert C Liddington, Stuart A Lipton
ABSTRACT

Emerging evidence suggests that oxidative/nitrosative stress, as occurs during aging, contributes to the pathogenesis of Parkinson's disease (PD). In contrast, detoxification of reactive oxygen species and reactive nitrogen species can protect neurons. DJ-1 has been identified as one of several recessively inherited genes whose mutation can cause familial PD, and inactivation of DJ-1 renders neurons more susceptible to oxidative stress and cell death. DJ-1 is also known to regulate the activity of the phosphatase and tensin homolog (PTEN), which plays a critical role in neuronal cell death in response to various insults. However, mechanistic details delineating how DJ-1 regulates PTEN activity remain unknown. Here, we report that PTEN phosphatase activity is inhibited via a transnitrosylation reaction [i.e., transfer of a nitric oxide (NO) group from the cysteine residue of one protein to another]. Specifically, we show that DJ-1 is S-nitrosylated (forming SNO-DJ-1); subsequently, the NO group is transferred from DJ-1 to PTEN by transnitrosylation. Moreover, we detect SNO-PTEN in human brains with sporadic PD. Using x-ray crystallography and site-directed mutagenesis, we find that Cys106 is the site of S-nitrosylation on DJ-1 and that mutation of this site inhibits transnitrosylation to PTEN. Importantly, S-nitrosylation of PTEN decreases its phosphatase activity, thus promoting cell survival. These findings provide mechanistic insight into the neuroprotective role of SNO-DJ-1 by elucidating how DJ-1 detoxifies NO via transnitrosylation to PTEN. Dysfunctional DJ-1, which lacks this transnitrosylation activity due to mutation or prior oxidation (e.g., sulfonation) of the critical cysteine thiol, could thus contribute to neurodegenerative disorders like PD.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Calcium Ionophore A23187, ≥98% (TLC), powder
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Anti-V5 antibody, Mouse monoclonal, clone V5-10, purified from hybridoma cell culture
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Supelco
Malachite Green chloride, analytical standard
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
MISSION® esiRNA, targeting human PARK7
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Park7
Glutathione, European Pharmacopoeia (EP) Reference Standard