Passa al contenuto
Merck
Tutte le immagini(1)

Key Documents

52650

Sigma-Aldrich

Hexamethylene diisocyanate

purum, ≥98.0% (GC)

Sinonimo/i:

1,6-Diisocyanatohexane

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali


About This Item

Formula condensata:
OCN(CH2)6NCO
Numero CAS:
Peso molecolare:
168.19
Beilstein:
956709
Numero CE:
Numero MDL:
Codice UNSPSC:
12162002
ID PubChem:
NACRES:
NA.23

Grado

purum

Livello qualitativo

Saggio

≥98.0% (GC)

Indice di rifrazione

n20/D 1.453

P. eboll.

82-85 °C/0.1 mmHg

Densità

1.047 g/mL at 20 °C (lit.)

Stringa SMILE

O=C=NCCCCCCN=C=O

InChI

1S/C8H12N2O2/c11-7-9-5-3-1-2-4-6-10-8-12/h1-6H2
RRAMGCGOFNQTLD-UHFFFAOYSA-N

Cerchi prodotti simili? Visita Guida al confronto tra prodotti

Descrizione generale

Hexamethylene diisocyanate (HDI) is an aliphatic diisocyanate monomer belonging to the class of isocyanates. It is primarily used in the production of polyurethanes. The isocyanate functional groups in hexamethylene diisocyanate react readily with polyols to form polyurethane polymers. Polyurethanes derived from HDI are commonly used in various products, including coatings, adhesives, sealants, elastomers, foams, thin-film transistors, flexible or rigid plastics, biomedical applications, electronics and aerospace industries. It is also used to produce oligomers and prepolymers that when combined with a polyol produce light-stable polyurethane.

Applicazioni

Hexamethylene diisocyanate (HDI) is used as:
  • A crosslinker to crosslink the polyurethane chains in the triblock copolymer gate dielectric, which is then deposited on the substrate to fabricate low-voltage organic thin-film transistors.
  • A precursor in the preparation of electroactive shape memory polyurethane/graphene nanocomposites. These materials are usually used as actuators, sensors, artificial muscles, smart devices, and microswitches.
  • A crosslinker in conjunction with Pluronic F127, a nonionic surfactant, to synthesize a poly(lactic acid) (PLA)-based hydrogel for biomedical applications.
Highly reactive 1,6-hexamethylene diisocyanate (HMDI) was used to synthesize lactic acid polymers from oligomers by the addition of 2,2′-bis(2-oxazoline) (BOX) as chain extenders. Self-healing ability was rendered to polyurethane elastomer by synthesizing alkoxyamine-based diol and reacting it with tri-functional homopolymer of HMDI and polyethylene glycol (PEG). Plastic optical fiber (POF) was prepared by the bulk homopolymerization of HMDI catalyzed by Tin(II)-2 ethylhexanoate (SnOct).

Avvertenze

Danger

Indicazioni di pericolo

Classi di pericolo

Acute Tox. 1 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Resp. Sens. 1 - Skin Corr. 1C - Skin Sens. 1 - STOT SE 3

Organi bersaglio

Respiratory system

Codice della classe di stoccaggio

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

Classe di pericolosità dell'acqua (WGK)

WGK 1

Punto d’infiammabilità (°F)

266.0 °F - Pensky-Martens closed cup

Punto d’infiammabilità (°C)

130 °C - Pensky-Martens closed cup

Dispositivi di protezione individuale

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Scegli una delle versioni più recenti:

Certificati d'analisi (COA)

Lot/Batch Number

Non trovi la versione di tuo interesse?

Se hai bisogno di una versione specifica, puoi cercare il certificato tramite il numero di lotto.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

I clienti hanno visto anche

Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages
Yuan C, et al.
Polymer, 55(7), 1782-17971 (2014)
Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2'-bis(2-oxazoline)
Tuominen J, et al.
Polymer, 43(1), 3-10 (2002)
Highly stable plastic optical fibre amplifiers containing [Eu(btfa)3(MeOH)(bpeta)]: A luminophore able to drive the synthesis of polyisocyanates
Fabbri P, et al.
Polymer, 55(2), 488-494 (2014)
Sander M van Putten et al.
Journal of biomedical materials research. Part A, 98(4), 527-534 (2011-06-18)
Biomaterials are at continuous risk of bacterial contamination during production and application. In vivo, bacterial contamination of biomaterials delays the foreign body reaction (FBR). Endotoxins such as lipopolysaccharides (LPS), major constituents of the bacterial cell wall, are potent stimulators of
Ying-Yu Chen et al.
Langmuir : the ACS journal of surfaces and colloids, 29(11), 3721-3729 (2013-02-28)
The purpose of this study is to develop an injectable thermoresponsive hydrogel system that can undergo sol-gel phase transition by the stimulation of body temperature with improved mechanical stability and biocompatibility as a controlled drug delivery carrier for cancer therapy.

Protocolli

HPLC Analysis of Isocyanates on Titan C18

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.