Passa al contenuto
Merck
Tutte le immagini(1)

Documenti fondamentali

739960

Sigma-Aldrich

Resomer® RG 505, Poly(D,L-lactide-co-glycolide)

ester terminated, Mw 54,000-69,000

Sinonimo/i:

PLGA

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali


About This Item

Formula condensata:
[C3H4O2]x[C2H2O2]y
Numero CAS:
Codice UNSPSC:
12162002
NACRES:
NA.23

Livello qualitativo

Stato

amorphous

Rapporto d’alimentazione

lactide:glycolide 50:50

PM

Mw 54,000-69,000

Tempo di degradazione

<3 months

Viscosità

0.61-0.74 dL/g, 0.1 % (w/v) in chloroform(25 °C, Ubbelohde) (size 0c glass capillary viscometer)

Temp. transizione

Tg 48-52 °C

Temperatura di conservazione

2-8°C

InChI

1S/C6H8O4.C4H4O4/c1-3-5(7)10-4(2)6(8)9-3;5-3-1-7-4(6)2-8-3/h3-4H,1-2H3;1-2H2
LCSKNASZPVZHEG-UHFFFAOYSA-N

Descrizione generale

Poly(lactide-co-glycolide)(PLGA) is a biodegradable polymer used in the preparation of polymericmicrospheres. These polymers degrade in vivo by hydrolysis of their esterbackbone into non-toxic products, which are excreted by the kidneys oreliminated as CO2 and water through biochemical pathways. PLGAmicrospheres have been widely used to encapsulate drug molecules and have beenused as long-acting, sustained-release pharmaceutical formulations.

Applicazioni

Poly(lactide-co-glycolide)(PLGA) can be used to fabricate sustained-release drug delivery systems, for example, it can be used to encapsulate the anti-inflammatory lipophilic drug atorvastatin.

Note legali

Product of Evonik
RESOMER is a registered trademark of Evonik Rohm GmbH

Codice della classe di stoccaggio

11 - Combustible Solids

Classe di pericolosità dell'acqua (WGK)

WGK 3

Punto d’infiammabilità (°F)

Not applicable

Punto d’infiammabilità (°C)

Not applicable


Scegli una delle versioni più recenti:

Certificati d'analisi (COA)

Lot/Batch Number

Non trovi la versione di tuo interesse?

Se hai bisogno di una versione specifica, puoi cercare il certificato tramite il numero di lotto.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

Rongcai Liang et al.
International journal of pharmaceutics, 454(1), 344-353 (2013-07-23)
Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative
Shu-Chun Chuang et al.
Parasites & vectors, 6, 34-34 (2013-02-13)
Current development efforts of subunit vaccines against Toxoplasma gondii, the etiological agent of toxoplasmosis, have been focused mainly on tachyzoite surface antigen 1 (SAG1). Since microparticles made from poly (lactide-co-glycolide) (PLG) polymers have been developed as safe, potent adjuvants or
Vanna Sanna et al.
International journal of nanomedicine, 7, 5501-5516 (2012-10-25)
Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may
Mani Gajendiran et al.
Colloids and surfaces. B, Biointerfaces, 104, 107-115 (2013-01-10)
A series of biodegradable low molecular weight PLGA-PEG-PLGA tri-block copolymers have been synthesized in powder form. The anti-tuberculosis drug Isoniazid (INH) loaded polymeric core-shell nanoparticles (CSNPs) have been prepared by sonication followed by water-in-oil-in-water (w/o/w) double emulsification technique. The nanoparticles
Igor Jeroukhimov et al.
Journal of the American College of Surgeons, 218(1), 102-107 (2013-11-12)
Chronic pain after inguinal hernia repair occurs in 16% to 62% of patients. The underlying mechanism probably involves sensory nerve damage and abnormal healing that might be influenced by the materials chosen for the procedure. We hypothesize that nonabsorbable sutures

Articoli

The world of commercial biomaterials has stagnated over the past 30 years as few materials have successfully transitioned from the bench to clinical use. Synthetic aliphatic polyesters have continued to dominate the field of resorbable biomaterials due to their long history and track record of approval with the U.S. Food and Drug Administration (FDA).

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Vedi tutto

Contenuto correlato

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.