Passa al contenuto
Merck
Tutte le immagini(5)

Key Documents

440744

Sigma-Aldrich

Polycaprolactone

average Mn 80,000

Sinonimo/i:

2-Oxepanone homopolymer, 6-Caprolactone polymer

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali


About This Item

Formula condensata:
(C6H10O2)n
Codice UNSPSC:
12162002
NACRES:
NA.23

Forma fisica

pellets (~3 mm)

Livello qualitativo

PM

average Mn 80,000

Impurezze

<0.5% water

Punto di fusione

60 °C (lit.)

Densità

1.145 g/mL at 25 °C

Mw/Mn

<2

applicazioni

3D bioprinting
advanced drug delivery

Stringa SMILE

C1CCC(=O)OCC1 (Canonical-SMILES)

InChI

1S/C6H10O2/c7-6-4-2-1-3-5-8-6/h1-5H2
PAPBSGBWRJIAAV-UHFFFAOYSA-N

Cerchi prodotti simili? Visita Guida al confronto tra prodotti

Descrizione generale

Polycaprolactone (PCL) is a semi crystalline hydrophobic biodegradable polyester which finds major applications as a drug delivery agent because of its cost efficiency, high toughness and biocompatibility. PCL possesses some unique properties such as:
  • It degrades slower than other biodegradable polyesters in physiological condition, this property can be exploited in the controlled release of drugs in target tissues over a period of time.
  • Its poor surface wetting and interaction with biological fluids on account of its hydrophobicity leads to poor cell adhesion and proliferation, hence it is blended with other synthetic /natural polymers.

Applicazioni

  • PCL loaded with antibiotics may be used to treat infections of the respiratory tract, like tuberculosis.
  • Investigations were carried out based upon phenotypic responses of human bone marrow mesenchymal cells (hBMSCs) for different ratio of chitosan/ polycaprolactone (PCL) blends.
  • PCL/biomedical ceramic materials have been studied for possible osteo tissue regeneration.
  • Action of PCL/graded insulin/beta-5 glycerophosphate concentrations on osteochondral tissue formation through adipose-derived stromal cell differentiation.
  • Other general uses include:extrusion aid, die lubricant, mold release, pigment and filler dispersion aid and polyester segments in urethanes and block polyesters.

Caratteristiche e vantaggi

Biodegradable polymer
Non-toxic, biodegradable in soil, broad miscibility, mechanical compatibility with many polymers and good adhesion to a broad spectrum of substrates.

Codice della classe di stoccaggio

11 - Combustible Solids

Classe di pericolosità dell'acqua (WGK)

WGK 3

Punto d’infiammabilità (°F)

Not applicable

Punto d’infiammabilità (°C)

Not applicable

Dispositivi di protezione individuale

Eyeshields, Gloves, type N95 (US)


Scegli una delle versioni più recenti:

Certificati d'analisi (COA)

Lot/Batch Number

Non trovi la versione di tuo interesse?

Se hai bisogno di una versione specifica, puoi cercare il certificato tramite il numero di lotto.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

I clienti hanno visto anche

Slide 1 of 1

1 of 1

Hung-Jen Shao et al.
Journal of biomedical materials research. Part A, 100(12), 3344-3352 (2012-06-27)
The phenotypic responses of human bone marrow mesenchymal cells (hBMSCs) on different ratio of chitosan/polycaprolactone (PCL) blends were investigated in this study. The results showed that hBMSCs existed different morphology on chitosan/PCL blends due to the different adhesion characteristic of
Cevat Erisken et al.
Tissue engineering. Part A, 17(9-10), 1239-1252 (2010-12-30)
The ability to fabricate tissue engineering scaffolds containing systematic gradients in the distributions of stimulators provides additional means for the mimicking of the important gradients observed in native tissues. Here the concentration distributions of two bioactive agents were varied concomitantly
T Limongi et al.
Molecular neurobiology, 55(12), 8788-8798 (2018-03-31)
Biopolymers are increasingly employed for neuroscience applications as scaffolds to drive and promote neural regrowth, thanks to their ability to mediate the upload and subsequent release of active molecules and drugs. Synthetic degradable polymers are characterized by different responses ranging
Wendi Zhang et al.
Biomaterials, 34(27), 6495-6503 (2013-06-04)
Coating the polycation/DNA binary complexes with PEGylated polyanions can improve long-circulation and biocompatibility in vivo. However, it has been certificated PEG dilemma can reduces gene transfection efficiency because of inhibition in cellular uptake and endosomal escape. Herein, two PEGylated anionic
Wei Ching Low et al.
Biomaterials, 34(14), 3581-3590 (2013-02-19)
At present, the recovery prospect for patients with chronic neurodegenerative diseases or acute trauma in the central nervous system is sub-optimal. The controlled differentiation of neural stem/progenitor cells (NPCs) to functional neurons is a possible treatment strategy. In contrast to

Articoli

We will explore the technological advances that have contributed toward the progress of 3DP of tissue engineering scaffolds, current materials used to create 3DP scaffolds, and the challenges that remain.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Innovations in polymer technology have had a significant impact on the advancement of novel drug delivery systems.

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.