Skip to Content
Merck
All Photos(3)

Key Documents

792071

Sigma-Aldrich

Spiro-MeOTAD

greener alternative

99% (HPLC)

Synonym(s):

N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl)-9,9′-spirobi[9H-fluorene]-2,2′,7,7′-tetramine, Spiro-OMeTAD

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C81H68N4O8
CAS Number:
Molecular Weight:
1225.43
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

99% (HPLC)

form

solid

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

243-248 °C

λmax

306 nm in dichloromethane
385 nm in dichloromethane

fluorescence

λem 429 nm in dichloromethane

greener alternative category

SMILES string

COC(C=C1)=CC=C1N(C2=CC=C(C=C2)OC)C(C=C3)=CC4=C3C(C=CC(N(C5=CC=C(C=C5)OC)C6=CC=C(C=C6)OC)=C7)=C7C84C9=C(C=CC(N(C%10=CC=C(C=C%10)OC)C%11=CC=C(C=C%11)OC)=C9)C%12=C8C=C(N(C%13=CC=C(C=C%13)OC)C%14=CC=C(C=C%14)OC)C=C%12

InChI

1S/C81H68N4O8/c1-86-65-29-9-53(10-30-65)82(54-11-31-66(87-2)32-12-54)61-25-45-73-74-46-26-62(83(55-13-33-67(88-3)34-14-55)56-15-35-68(89-4)36-16-56)50-78(74)81(77(73)49-61)79-51-63(84(57-17-37-69(90-5)38-18-57)58-19-39-70(91-6)40-20-58)27-47-75(79)76-48-28-64(52-80(76)81)85(59-21-41-71(92-7)42-22-59)60-23-43-72(93-8)44-24-60/h9-52H,1-8H3

InChI key

XDXWNHPWWKGTKO-UHFFFAOYSA-N

General description

We are committed to bringing you Greener Alternative Products,which adhere to one or more of The 12 Principles of Greener Chemistry. This product is an enabling product used as a Hole Transport Material for high-performance solar cells and thus has been enhanced for energy efficiency. Click here for more information.

Application

High-mobility material used for white OLEDs to increase hole injection and transport. It is the best solid-state hole transporting material, to date, used to replace the liquid electrolyte for DSSC solar cells, due to an excellent pore-filling property in nanoporous TiO2 film with pore size of around 30-50 nm; attributed to its small molecular size.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lining He et al.
ACS applied materials & interfaces, 4(3), 1704-1708 (2012-03-07)
High-efficiency hybrid solar cells are fabricated using a simple approach of spin coating a transparent hole transporting organic small molecule, 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) on silicon nanowires (SiNWs) arrays prepared by electroless chemical etching. The characteristics of the hybrid cells are investigated
Chemical compatibility between a hole conductor and organic dye enhances the photovoltaic performance of solid-state dye-sensitized solar cells
Young Soo Kwon,
Journal of Materials Chemistry, 22(17), 8641-8648 (2012)
Jingqi Liu et al.
Scientific reports, 9(1), 1362-1362 (2019-02-06)
Previously, textile dye sensitised solar cells (DSSCs) woven using photovoltaic (PV) yarns have been demonstrated but there are challenges in their implementation arising from the mechanical forces in the weaving process, evaporation of the liquid electrolyte and partially shaded cells

Articles

Solar panels for homes and businesses have seen a rise in demand over the past few years as we move toward more environment-friendly and sustainable energy sources. In 2010, the average power from solar was just 5.0 GWh/d and the Energy Information Administration (EIA) expects this to be 90 GWh/d in 2016.

While dye sensitization as the basis for color photography has been accepted for a very long time,1 attempts to use this principle for the conversion of solar light to electricity generally had resulted only in very low photocurrents, below 100 nA/cm

Advances in the area of soft optoelectronics, with a focus on the development of organic optoelectronic devices on shape memory polymers (SMP) is discussed.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

See All

Related Content

Organic electronics utilizes organic conductors and semiconductors for applications in organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service