跳转至内容
Merck
  • Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation.

Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation.

PloS one (2015-08-13)
Priyadarsini Kumar, Twanda L Thirkill, Jennifer Ji, Louise H Monte, Gordon C Douglas
摘要

Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.

材料
货号
品牌
产品描述

Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
甘氨酸, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
甘氨酸, suitable for electrophoresis, ≥99%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
3-吗啉丙磺酸, ≥99.5% (titration)
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
甘氨酸, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, ≥98.0% (titration)
Sigma-Aldrich
3-吗啉丙磺酸, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
氯化锂, for molecular biology, ≥99%
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
丁酸钠, 98%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化锂 溶液, 8 M, for molecular biology, ≥99%