跳转至内容
Merck
所有图片(1)

Key Documents

EHU157961

Sigma-Aldrich

MISSION® esiRNA

targeting human CD74

登录查看公司和协议定价


About This Item

分類程式碼代碼:
41105324
NACRES:
NA.51

描述

Powered by Eupheria Biotech

產品線

MISSION®

形狀

lyophilized powder

esiRNA cDNA 標靶序列

ACACAGGCTTTTCCATCCTGGTGACTCTGCTCCTCGCTGGCCAGGCCACCACCGCCTACTTCCTGTACCAGCAGCAGGGCCGGCTGGACAAACTGACAGTCACCTCCCAGAACCTGCAGCTGGAGAACCTGCGCATGAAGCTTCCCAAGCCTCCCAAGCCTGTGAGCAAGATGCGCATGGCCACCCCGCTGCTGATGCAGGCGCTGCCCATGGGAGCCCTGCCCCAGGGGCCCATGCAGAATGCCACCAAGTATGGCAACATGACAGAGGACCATGTGATGCACCTGCTCCAGAATGCTGACCCCCTGAAGGTGTACCCGCCACTGAAGGGGAGCTTCCCGGAGAACCTGAGACACCTTAAGAACACCATGGAGACCATAGACTGGAAGGTCTTTGAGAGCTGGATGC

Ensembl | 人類登錄號

NCBI登錄號

運輸包裝

ambient

儲存溫度

−20°C

基因資訊

一般說明

MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

法律資訊

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

儲存類別代碼

10 - Combustible liquids

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Pei-Chi Chan et al.
Clinical science (London, England : 1979), 132(14), 1581-1596 (2018-05-19)
Adipose tissue (AT) inflammation is crucial to the development of obesity-associated insulin resistance. Our aim was to investigate the contribution of cyclooxygenase-2 (COX-2)/macrophage migration inhibitory factor (MIF)-mediated cross-talk between hypertrophic adipocytes and macrophages to the etiology of AT inflammation and
Jun-Wei Gai et al.
Oncology letters, 15(5), 7631-7638 (2018-05-08)
The aim of the present study was to investigate the expression and potential roles of CD74 in human urothelial cell carcinoma of the bladder (UCB) in vitro and in vivo. CD74 and macrophage migration inhibitory factor (MIF) were located and
Jing-Nan Liang et al.
Biochimica et biophysica acta. Molecular basis of disease, 1865(9), 2441-2450 (2019-06-09)
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was
Caitlin J Bowen et al.
Developmental biology, 407(1), 145-157 (2015-07-19)
Proper remodeling of the endocardial cushions into thin fibrous valves is essential for gestational progression and long-term function. This process involves dynamic interactions between resident cells and their local environment, much of which is not understood. In this study, we
Yeyou Liang et al.
Metabolism: clinical and experimental, 64(12), 1682-1693 (2015-10-13)
Evidence shows that both macrophage migration inhibitory factor (MIF) and GLUT4 glucose transporter are involved in diabetic cardiomyopathy (DCM), but it remains largely unknown whether and how MIF regulates GLUT4 expression in cardiomyocytes. The present study aims to investigate the

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门