跳转至内容
Merck
所有图片(3)

Key Documents

17-10196

Sigma-Aldrich

LentiBrite α-actinin-RFP Lentiviral Biosensor

登录查看公司和协议定价


About This Item

分類程式碼代碼:
12352207
eCl@ss:
34360190

製造商/商標名

Chemicon®
LentiBrite

技術

cell based assay: suitable
immunocytochemistry: suitable
immunofluorescence: suitable
transfection: suitable

UniProt登錄號

檢測方法

fluorometric

運輸包裝

dry ice

基因資訊

human ... ACTN1(87)

一般說明

Read our application note in Nature Methods!
http://www.nature.com/app_notes/nmeth/2012/121007/pdf/an8620.pdf
(Click Here!)

Learn more about the advantages of our LentiBrite Lentiviral Biosensors! Click Here

Biosensors can be used to detect the presence/absence of a particular protein as well as the subcellular location of that protein within the live state of a cell. Fluorescent tags are often desired as a means to visualize the protein of interest within a cell by either fluorescent microscopy or time-lapse video capture. Visualizing live cells without disruption allows researchers to observe cellular conditions in real time.

Lentiviral vector systems are a popular research tool used to introduce gene products into cells. Lentiviral transfection has advantages over non-viral methods such as chemical-based transfection including higher-efficiency transfection of dividing and non-dividing cells, long-term stable expression of the transgene, and low immunogenicity.

EMD Millipore is introducing LentiBrite Lentiviral Biosensors, a new suite of pre-packaged lentiviral particles encoding important and foundational proteins of autophagy, apoptosis, and cell structure for visualization under different cell/disease states in live cell and in vitro analysis.
  • Pre-packaged, fluorescently-tagged with GFP & RFP
  • Higher efficiency transfection as compared to traditional chemical-based and other non-viral-based transfection methods
  • Ability to transfect dividing, non-dividing, and difficult-to-transfect cell types, such as primary cells or stem cells
  • Non-disruptive towards cellular function

EMD Millipore’s LentiBrite α-actinin-RFP lentiviral particles provide bright fluorescence and precise localization to enable live cell analysis of autophagy in difficult-to-transfect cell types.
Migration of cells requires engagement of sites of extracellular matrix contact (focal adhesions) with the actin cytoskeleton. Contractile force is further generated when the actin microfilaments develop into stress fibers by bundling in an anti-parallel fashion and recruiting myosin II. A key component of stress fibers is the spectrin-related protein, α-actinin, which directly links actin microfilaments and also couples them to focal adhesions. Imaging of live cells containing α-actinin fused with fluorescent proteins has provided key insights into the dynamic mechanisms of stress fiber assembly and adaptation to strain.
EMD Millipore’s LentiBrite α-actinin-RFP lentiviral particles provide bright fluorescence and precise localization to enable live cell analysis of focal adhesion dynamics in difficult-to-transfect cell types.

應用

Fluorescence Microscopy Imaging:
(See Figure 1 in datasheet)
Primary cell type, Human mesenchymal stem cells (HuMSC), were plated in a chamber slide and transduced with lentiviral particles at an MOI of 5 for 24 hours. After media replacement and 48 hours further incubation, cells were fixed with formaldehyde and mounted. Images were obtained by oil immersion wide-field fluorescence microscopy. The α-actinin-RFP appears in a periodic distribution along microfilamentous structures.

Additional Cell Types:
(See Figure 2 in datasheet)
U2OS, HT1080 and REF52 cells were treated as in Figure 1 at an MOI of 5, 20 and 20, respectively, for 24 hours.

Hard-to-transfect Cell Types:
(See Figure 3 in datasheet)
Primary cell type HUVEC were plated in chamber slides and transduced with lentiviral particles at an MOI of 20 for 24 hours.

For optimal fluorescent visualization, it is recommended to analyze the target expression level within 24-48 hrs after transfection/infection for optimal live cell analysis, as fluorescent intensity may dim over time, especially in difficult-to-transfect cell lines. Infected cells may be frozen down after successful transfection/infection and thawed in culture to retain positive fluorescent expression beyond 24-48 hrs. Length and intensity of fluorescent expression varies between cell lines. Higher MOIs may be required for difficult-to-transfect cell lines.
Research Category
Cell Structure
Research Sub Category
Adhesion (CAMs)

成分

α-actinin-TagRFP Lentivirus:
One vial containing 25 µL of lentiviral particles at a minimum of 3 x 10E8 infectious units (IFU) per mL.
For lot-specific titer information, please see “Viral Titer” in the product box above.


Promoter
EF-1 (Elongation Factor-1)


Multiplicty of Infection (MOI)
MOI = Ratio of # of infectious lentiviral particles (IFU) to # of cells being infected.
Typical MOI values for high transduction efficiency and signal intensity are in the range of 20-40. For this target, some cell types may require lower MOIs (e.g., HT-1080, human mesenchymal stem cells (HuMSC), human umbilical vein endothelial cells (HUVEC)), while others may require higher MOIs (e.g., HeLa, U2OS).
NOTE: MOI should be titrated and optimized by the end user for each cell type and lentiviral target to achieve desired transduction efficiency and signal intensity.

品質

Evaluated by transduction of HT-1080 cells and fluorescent imaging performed for assessment of target localization and transduction efficiency.

外觀

PEG precipitation

儲存和穩定性

Storage and Handling
Lentivirus is stable for at least 4 months from date of receipt when stored at -80°C. After first thaw, place immediately on ice and freeze in working aliquots at -80°C. Frozen aliquots may be stored for at least 2 months. Further freeze/thaws may result in decreased virus titer and transduction efficiency.

IMPORTANT SAFETY NOTE
Replication-defective lentiviral vectors, such as the 3rd Generation vector provided in this product, are not known to cause any diseases in humans or animals. However, lentiviruses can integrate into the host cell genome and thus pose some risk of insertional mutagenesis. Material is a Risk Group 2 and should be handled under BSL2 controls. A detailed discussion of biosafety of lentiviral vectors is provided in Pauwels, K. et al. (2009). State-of-the-art lentiviral vectors for research use: Risk assessment and biosafety recommendations. Curr. Gene Ther. 9: 459-474.

法律資訊

CHEMICON is a registered trademark of Merck KGaA, Darmstadt, Germany

免責聲明

This product contains genetically modified organisms (GMO). Within the EU GMOs are regulated by Directives 2001/18/EC and 2009/41/EC of the European Parliament and of the Council and their national implementation in the member States respectively. This legislation obliges {HCompany} to request certain information about you and the establishment where the GMOs are being handled. Click here for Enduser Declaration (EUD) Form.

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

儲存類別代碼

10 - Combustible liquids


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

商品

High titer lentiviral particles including beta-actin, alpha-tubulin and vimentin used for live cell analysis of cytoskeleton structure proteins.

High titer lentiviral particles including beta-actin, alpha-tubulin and vimentin used for live cell analysis of cytoskeleton structure proteins.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门