推荐产品
product name
COD Cell Test (Hg-free), photometric, 100-1500 mg/L (COD), Spectroquant®
產品線
Spectroquant®
品質等級
用途
sufficient for 25 tests
分析物功能類別
chemical oxygen demand (COD)
測量範圍
100-1500 mg/L (COD)
技術
photometry: suitable
相容性
for use with Spectroquant® Move 100
for use with Spectroquant® Nova 60 A
for use with Spectroquant® Prove 100
for use with Spectroquant® Prove 300
for use with Spectroquant® Prove 600
檢測方法
photometric (Oxidation with chromosulfuric acid, determination as chromium(III))
儲存溫度
15-25°C
一般說明
The Chemical Oxygen Demand (COD) is a measure for the amount of oxygen consumed during the oxidation of organic matter, which gives a clear indication for the quality of a water source, it is for sure one of the most important parameters in (waste) water analysis. Our Spectroquant® COD Tests allow you to accurately quantify the of COD levels in your sample.
These special Hg-free COD Test Kits require the samples to be free of Chloride to avoid interference and wrong results.
The Spectroquant® Cell Tests come with prefilled 16 mm round cells and all the required reagents to perform the analysis according to the instruction leaflet provided.
All Spectroquant® Cell and Reagent Test Kits are equipped with the unique Live ID (2D barcode), which allows seamless method recognition and contains essential information such as lot number, expiry date, and automatic calibration updates.
應用
- Pollutant removal in an experimental bioretention cell situated in a northern Chinese sponge city.: This study evaluates the efficiency of a bioretention cell in removing pollutants from urban runoff in a northern Chinese sponge city. The research highlights the importance of innovative green infrastructure in urban water management and pollution control (Shi et al., 2024).
- Treatment of diluted palm oil mill effluent (POME) synchronous with electricity production in a persulfate oxidant-promoted photocatalytic fuel cell.: This research explores a novel approach to treating diluted POME while generating electricity using a photocatalytic fuel cell. The study demonstrates the potential for integrating wastewater treatment with renewable energy production (Yap et al., 2023).
- Influence of Fe(2)O(3) and bacterial biofilms on Cu(II) distribution in a simulated aqueous solution: A feasibility study to sediments in the Pearl River Estuary (PR China).: The study investigates the role of iron oxide and bacterial biofilms in copper distribution in aqueous solutions, offering insights into sediment management and pollution control in estuarine environments (Kurniawan et al., 2023).
- Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa.: This paper examines the residual pollutants in treated wastewater from pulp paper mills and assesses their phytotoxic and cytotoxic effects using Allium cepa as a model organism, underlining the need for improved wastewater treatment processes (Sharma et al., 2021).
- Evaluating nitrite oxidizing organism survival under different nitrite concentrations.: The research evaluates the survival of nitrite-oxidizing organisms at varying nitrite concentrations, providing critical insights into the optimization of biological nitrogen removal processes in wastewater treatment (Liu et al., 2020).
法律資訊
訊號詞
Danger
危險分類
Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1B - Eye Dam. 1 - Met. Corr. 1 - Muta. 1B - Repr. 1B - Skin Corr. 1A
儲存類別代碼
6.1D - Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门