跳转至内容
Merck

917737

Sigma-Aldrich

NanoFabTx materials screening kit

for synthesis of polymeric nanoparticles

别名:

Non-PEGylated drug delivery formulation, PCL, PLA, PLGA

登录查看公司和协议定价


About This Item

分類程式碼代碼:
12161503
NACRES:
NA.23

描述

Kit components :
PLGA-Nano (907782-500mg)
PLGA-Nano75 (916382-500mg)
PLA-Nano (910996-500mg)
PCL-Nano (916382-500mg)
Stabilizer - P (913448-10g)

品質等級

應用

advanced drug delivery

一般說明

NanoFabTx formulation kits and lipid mixes enable users to encapsulate a wide variety of therapeutic drug molecules for targeted or extended drug delivery without the need for lengthy trial-and-error optimization. NanoFabTx kits provide an easy to use toolkit for encapsulating a variety of therapeutics in nanoparticles, microparticles, or liposomes. Drug encapsulated particles synthesized with the NanoFabTx kits are suitable for biomedical research applications such as oncology, immuno-oncology, gene delivery and vaccine delivery.

應用

The NanoFabTx materials screening kit, for synthesis of polymeric nanoparticles, is a ready-to-use nanoformulation kit for the synthesis of nanoparticles for drug delivery. Poly(lactic-co-glycolic acid) (PLGA), poly(D,L-lactic acid) (PLA) and polycaprolactone (PCL) are biocompatible and biodegradable polymers that have been approved by the FDA for biomedical and pharmaceutical applications. This kit includes properly selected PLGA, PLA, and PCL polymers and stabilizer, allowing for rapid screening of optimal materials for enhanced drug loading and controlled drug release.

特點和優勢

  • Ready-to-use polymer drug formulation screening kit for non-PEGylated nanoparticles
  • Choose from either nanopreciptiation or microfluidics-based protocols
  • Create specifically sized, biodegradable, PLGA, PLA, or PCL nanoparticles
  • Maximize the encapsulation of hydrophobic drugs
  • Four different non-PEGylated polymers are included

準備報告

Comprehensive protocols for nanoparticle synthesis methods are included:
  • A nanoprecipitation protocol to prepare drug-encapsulated nanoparticles in standard laboratory glassware.
  • A microfluidics protocol using commercial platforms or syringe pumps.

The microfluidics protocol uses NanoFabTx device kits (911593), which provide the microfluidics chips, fittings, and tubing required to get started with microfluidics-based synthesis (compatible microfluidics system or syringe pump required).

For more information, please refer to the protocol under the document section of this page.

法律資訊

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

抱歉,我们目前尚未线上提供该产品的COA。

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

S Freiberg et al.
International journal of pharmaceutics, 282(1-2), 1-18 (2004-09-01)
Polymer microspheres can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. Since the rate of drug release
Verónica Lassalle et al.
Macromolecular bioscience, 7(6), 767-783 (2007-06-02)
The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices
Nazila Kamaly et al.
Chemical Society reviews, 41(7), 2971-3010 (2012-03-06)
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery
Byung Kook Lee et al.
Advanced drug delivery reviews, 107, 176-191 (2016-06-06)
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门