跳转至内容
Merck

907642

Sigma-Aldrich

Cuprous thiocyanate

greener alternative

35 mg/mL in diethyl sulfide

别名:

Copper thiocyanate perovskite hole transport material, Copper(I) thiocyanate perovskite hole transport material, Thiocyanic acid in diethyl sulfide

登录查看公司和协议定价


About This Item

线性分子式:
CuSCN
MDL號碼:
分類程式碼代碼:
12352101
NACRES:
NA.23

形狀

liquid

環保替代產品特色

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

環保替代類別

一般說明

We are committed to bringing you Greener Alternative Products,which adhere to one or more of The 12 Principles of Greener Chemistry. This product is an enabling product used as a Hole Transport Material for high-performance solar cells and thus has been enhanced for energy efficiency. Click here for more information.

應用

Layers of CuSCN exhibit high hole mobility, high thermal stability, and exceptional optical transparency across the UV-Vis/NIR spectrum. CuSCN finds application as an alternative to organic hole transport materials such as PEDOT:PSS and Spiro-MeOTAD in perovskite-based solar cells (PSCs). Photovoltaic conversion efficiencies of >20% have been reported in PSCs with CuSCN [5]. In addition, compared to Spiro-OMeTAD the CuSCN-based PSCs have been shown to exhibit better thermal stability.

訊號詞

Danger

危險分類

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Flam. Liq. 2 - Skin Irrit. 2

儲存類別代碼

3 - Flammable liquids

水污染物質分類(WGK)

WGK 3

閃點(°F)

25.7 °F - closed cup

閃點(°C)

-3.5 °C - closed cup


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

抱歉,我们目前尚未线上提供该产品的COA。

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Planar perovskite solar cells employing copper(I) thiocyanate/N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine bilayer structure as hole transport layers
Tseng Z L ,et al.
Japanese Journal of Applied Physics, 57, 02CE07-02CE07 (2018)
Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
N Arora, et al.
Science, 358(6364), 768-771 (2017)
Pichaya Pattanasattayavong et al.
Chemical communications (Cambridge, England), 49(39), 4154-4156 (2012-12-12)
The optical, structural and charge transport properties of solution-processed films of copper(I) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ~20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics
High-Efficiency Organic Photovoltaic Cells Based on the Solution-Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS
Gross N Y, et al.
Advanced Energy Materials, 5, 1401529-1401529 (2015)
Pichaya Pattanasattayavong et al.
Advanced materials (Deerfield Beach, Fla.), 25(10), 1504-1509 (2013-01-03)
The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门