跳转至内容
Merck

901635

Sigma-Aldrich

Poly(ethylene glycol) bis(2-pyridyl KAT)

PEG average Mn 10,000

别名:

KAT PEG, bis KAT PEG, di KAT PEG

登录查看公司和协议定价


About This Item

线性分子式:
(C6H3BF3KNO)O[CH2CH2O]nCH2CH2O(C6H3BF3KNO)
分類程式碼代碼:
12352005
NACRES:
NA.23

形狀

powder or solid

分子量

PEG average Mn 10,000
PEG ~10,000 Da

顏色

off-white to pale yellow

儲存溫度

2-8°C

一般說明

Poly(ethylene glycol) bis(2-pyridyl KAT) is a homobifunctional PEG featuring terminal potassium acyltrifluoroborate reactive groups for facile, rapid functionalization. Potassium acyltrifluoroborates (KATs) are stable functional groups that undergo rapid amide-forming ligations with hydroxylamines in aqueous media, in the presence of unprotected functional groups. In addition to its compatibility, these reactions proceed relatively quickly, lending to their use with sensitive biological reagents. This conjugation reaction offers a new approach to the synthesis of complex molecules without the complication of side reactions, such protein-polymer conjugates. KATs also undergo amide or imide-forming ligations in acidic conditions when reacted with primary amines or amides, respectively, as an alternative to classical acylation chemistry. Poly(ethylene glycol) bis(2-pyridyl KAT)s have been recently used in the rapid PEGylation and dimerization of expressed, folded protiens in near equimolar conditions, demonstrating the potential for these materials in a wide variety of drug delivery applications.

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

抱歉,我们目前尚未线上提供该产品的COA。

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates.
White CJ, et al.
ACS central science (2017)
Potassium Acyltrifluoroborate (KAT) Ligations are Orthogonal to Thiol-Michael and SPAAC Reactions: Covalent Dual Immobilization of Proteins onto Synthetic PEG Hydrogels.
Mazunin D, et al.
Helvetica Chimica Acta, 100(2) (2017)
Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations in water.
Saito, et al.
ACS Chemical Biology, 10, 1026-1033 (2015)
Alberto Osuna Gálvez et al.
Journal of the American Chemical Society, 139(5), 1826-1829 (2017-01-25)
Current methods for constructing amide bonds join amines and carboxylic acids by dehydrative couplings-processes that usually require organic solvents, expensive and often dangerous coupling reagents, and masking other functional groups. Here we describe an amide formation using primary amines and
Fumito Saito et al.
ACS chemical biology, 10(4), 1026-1033 (2015-01-13)
Chemoselective ligation reactions have contributed immensely to the development of organic synthesis and chemical biology. However, the ligation of stoichiometric amounts of large molecules for applications such as protein-protein conjugates is still challenging. Conjugation reactions need to be fast enough

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门