跳转至内容
Merck

723274

Sigma-Aldrich

4-氰基-4-[(十二烷基硫烷基硫羰基)硫烷基]戊酸

97% (HPLC)

别名:

4-Cyano-4-(((dodecylthio)carbonothioyl)thio)pentanoic acid

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C19H33NO2S3
分子量:
403.67
MDL號碼:
分類程式碼代碼:
12352100
PubChem物質ID:
NACRES:
NA.23

品質等級

化驗

97% (HPLC)

形狀

solid

mp

64-68 °C

儲存溫度

−20°C

SMILES 字串

CCCCCCCCCCCCSC(=S)SC(C)(CCC(O)=O)C#N

InChI

1S/C19H33NO2S3/c1-3-4-5-6-7-8-9-10-11-12-15-24-18(23)25-19(2,16-20)14-13-17(21)22/h3-15H2,1-2H3,(H,21,22)

InChI 密鑰

RNTXYZIABJIFKQ-UHFFFAOYSA-N

一般說明

需要获取帮助以选择合适的 RAFT 试剂吗?请查阅 RAFT 试剂与单体相容性表格

象形圖

Exclamation mark

訊號詞

Warning

危險聲明

危險分類

Acute Tox. 4 Oral

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

De-Xiang Zhang et al.
Scientific reports, 9(1), 1367-1367 (2019-02-06)
A new and facile approach to selectively functionalize the internal and external surfaces of porous silicon (pSi) for drug delivery applications is reported. To provide a surface that is suitable for sustained drug release of the hydrophobic cancer chemotherapy drug
Tong Yang et al.
Biomaterials science, 8(20), 5698-5714 (2020-09-16)
The combination therapy of cisplatin (CDDP) and metformin (MET) is a clinical strategy to enhance therapeutic outcomes in lung cancer. However, the efficacy of this combination is limited due to the asynchronous pharmacokinetic behavior of CDDP and MET, used as
Yiyuan Guo et al.
Expert opinion on drug delivery, 17(3), 407-421 (2020-02-06)
Background: Natamycin is the only topical ophthalmic antifungal drug approved by the Food and Drug Administration (FDA) of the United States, but has unsatisfactory factors such as high dosing frequency.Methods: We report the synthesis and preparation of self-assembled poly(ethylene glycol)-block-poly(glycidyl
Katharina Hendrich et al.
Polymers, 12(6) (2020-05-30)
Linear and four-arm star polystyrene samples prepared by RAFT polymerization were grafted to gold surfaces directly via their thiocarbonylthio-end groups. Nanoscale polymer patterns were subsequently formed via constrained dewetting. The patterned polymer films then served as a template for the
RAFT Agent Design and Synthesis
Keddie, D. J.; et al.
Macromolecules, 45, 5321-5342 (2012)

商品

The supply of low cost, high purity and effective Reversible addition−fragmentation chain-transfer (RAFT) Agents is the essential element in the industrial implementation of RAFT polymerization technology.

A series of polymerization were carried out using RAFT agents and monomers yielding well-defined polymers with narrow molecular weight distributions. The process allows radical-initiated growing polymer chains to degeneratively transfer reactivity from one to another through the use of key functional groups (dithioesters, trithiocarbonates, xanthates and dithiocarbamates). RAFT agents help to minimize out-of-control growth and prevent unwanted termination events from occurring, effectively controlling polymer properties like molecular weight and polydispersity. RAFT agents are commercially available. RAFT does not use any cytotoxic heavy metal components (unlike ATRP).

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

查看所有结果

实验方案

RAFT (Reversible Addition-Fragmentation chain Transfer) is a form of living radical polymerization involving conventional free radical polymerization of a substituted monomer in the presence of a suitable chain transfer (RAFT) reagent.

We present an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门