701963
Poly(ethylene glycol) diacrylate
average Mn 6,000, acrylate, ≤1,500 ppm MEHQ as inhibitor
Synonyme(s) :
Polyethylene glycol, PEG diacrylate
About This Item
Produits recommandés
Nom du produit
Poly(ethylene glycol) diacrylate, average Mn 6,000, contains ≤1500 ppm MEHQ as inhibitor
Forme
solid
Niveau de qualité
Poids mol.
average Mn 6,000
Contient
≤1500 ppm MEHQ as inhibitor
Pertinence de la réaction
reagent type: cross-linking reagent
reaction type: Polymerization Reactions
Température de transition
Tm 59-63 °C
Extrémité Ω
acrylate
Extrémité α
acrylate
Architecture des polymères
shape: linear
functionality: homobifunctional
Température de stockage
−20°C
Chaîne SMILES
OCCO.OC(=O)C=C
InChI
1S/C8H10O4/c1-3-7(9)11-5-6-12-8(10)4-2/h3-4H,1-2,5-6H2
Clé InChI
KUDUQBURMYMBIJ-UHFFFAOYSA-N
Vous recherchez des produits similaires ? Visite Guide de comparaison des produits
Catégories apparentées
Description générale
Application
It can be used as an alloying agent to prepare polymer membranes for gas separation applications. For example, an alloyed poly(Ether Block Amide)/ PEGDA membrane can be used for the separation of CO2/H2.
It can also be used as aprecursor to fabricate polymer electrolyte membranes(PEMs) for flexible Li-ionbatteries. The addition of PEGDA enhances the ionic conductivity, thermal stability,and mechanical toughness of PEMs.
Caractéristiques et avantages
- Highly hydrophilic
- Non-toxic
- Biocompatible
- Non-immunogenic
Mention d'avertissement
Danger
Mentions de danger
Conseils de prudence
Classification des risques
Eye Dam. 1 - Skin Irrit. 2 - Skin Sens. 1
Code de la classe de stockage
11 - Combustible Solids
Classe de danger pour l'eau (WGK)
WGK 1
Point d'éclair (°F)
Not applicable
Point d'éclair (°C)
Not applicable
Équipement de protection individuelle
dust mask type N95 (US), Eyeshields, Faceshields, Gloves
Faites votre choix parmi les versions les plus récentes :
Déjà en possession de ce produit ?
Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.
Les clients ont également consulté
Articles
In this article, we will discuss the benefits and limitations of several 2D and 3D scaffold patterning techniques that can be applied in the presence of cells. Although these methods will be discussed in the context of poly(ethylene glycol) (PEG)-based hydrogels, they can technically be applied to any optically transparent, photoactive substrate.
In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.
Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.
Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.
Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..
Contacter notre Service technique