Direkt zum Inhalt
Merck
  • Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

Journal of lipid research (2014-10-24)
Vincent O Oninla, Bernadette Breiden, Jonathan O Babalola, Konrad Sandhoff
ZUSAMMENFASSUNG

During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Diethylether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Diethylether, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Diethylether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Hexan, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexan, ReagentPlus®, ≥99%
Sigma-Aldrich
Cholesterin, Sigma Grade, ≥99%
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Hexan, Laboratory Reagent, ≥95%
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Hexan, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Palmitinsäure, ≥99%
Sigma-Aldrich
Cholesterin, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterin, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
1,3-Propandiol, 98%
Sigma-Aldrich
Essigsäure, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
3,4-Dihydro-2H-Pyran, 97%
Sigma-Aldrich
Diethylether
Sigma-Aldrich
Palmitinsäure, BioXtra, ≥99%
Sigma-Aldrich
1-Stearoyl-rac-glycerin, ≥99%
USP
Eisessig, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Essigsäure, ≥99.5%, FCC, FG
Sigma-Aldrich
Diethylether, ACS reagent, ≥98.0%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
SyntheChol® NS0-Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Essigsäure, natural, ≥99.5%, FG
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, ≥97.5%
Sigma-Aldrich
Diethylether, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Supelco
Cholesterin -Lösung, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Palmitinsäure, ≥98%, FCC, FG