Direkt zum Inhalt
Merck
  • On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer.

On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer.

Journal of the American Society for Mass Spectrometry (2014-08-12)
Tony W T Bristow, Andrew D Ray, Anne O'Kearney-McMullan, Louise Lim, Bryan McCullough, Alessio Zammataro
ZUSAMMENFASSUNG

For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Methyltetrahydrofuran, BioRenewable, ReagentPlus®, ≥99.5%, contains 150-400 ppm BHT as stabilizer
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Ameisensäure, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitril, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitril, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
2-Methyltetrahydrofuran, BioRenewable, anhydrous, ≥99%, Inhibitor-free
Supelco
Acetonitril, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Lösungsmittelrückstände Klasse 2 - Acetonitril, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Methyltetrahydrofuran, absolute, stored over molecular sieve
Sigma-Aldrich
Ameisensäure -Lösung, BioUltra, 1.0 M in H2O
Sigma-Aldrich
2-Methyltetrahydrofuran, BioRenewable, anhydrous, ≥99.0%, contains 250 ppm BHT as stabilizer
Supelco
2-Methyltetrahydrofuran, analytical standard
Sigma-Aldrich
Acetonitril
Supelco
Acetonitril, analytical standard
Supelco
Acetonitril, Pharmaceutical Secondary Standard; Certified Reference Material