Passa al contenuto
Merck

Primate lentiviruses are differentially inhibited by interferon-induced transmembrane proteins.

Virology (2014-12-03)
Jin Qian, Yann Le Duff, Yimeng Wang, Qinghua Pan, Shilei Ding, Yi-Min Zheng, Shan-Lu Liu, Chen Liang
ABSTRACT

Interferon-induced transmembrane (IFITM) proteins inhibit the entry of a large number of viruses. Not surprisingly, many viruses are refractory to this inhibition. In this study, we report that different strains of HIV and SIV are inhibited by human IFITM proteins to various degrees, with SIV of African green monkeys (SIV(AGM)) being mostly restricted by human IFITM2. Interestingly, SIV(AGM) is as much inhibited by human IFITM2 as by IFITM3 of its own host African green monkeys. Our data further demonstrate that the entry of SIV(AGM) is impaired by human IFITM2 and that this inhibition is overcome by the cholesterol-binding compound amphotericin B that also overcomes IFITM inhibition of influenza A viruses. These results suggest that IFITM proteins exploit similar mechanisms to inhibit the entry of both pH-independent primate lentiviruses and the pH-dependent influenza A viruses.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Anticorpo monoclonale ANTI-FLAG® M2, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Formaldeide, for molecular biology, 36.5-38% in H2O
SAFC
Formaldeide, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Formaldeide, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Supelco
Formaldeide, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldeide, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldeide, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldeide, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C