Passa al contenuto
Merck
  • SHetA2 interference with mortalin binding to p66shc and p53 identified using drug-conjugated magnetic microspheres.

SHetA2 interference with mortalin binding to p66shc and p53 identified using drug-conjugated magnetic microspheres.

Investigational new drugs (2013-11-21)
Doris Mangiaracina Benbrook, Baskar Nammalwar, Andrew Long, Hiroyuki Matsumoto, Anil Singh, Richard A Bunce, K Darrell Berlin
ABSTRACT

SHetA2 is a small molecule flexible heteroarotinoid (Flex-Het) with promising cancer prevention and therapeutic activity. Extensive preclinical testing documented lack of SHetA2 toxicity at doses 25 to 150 fold above effective doses. Knowledge of the SHetA2 molecular target(s) that mediate(s) the mechanism of SHetA2 action is critical to appropriate design of clinical trials and improved analogs. The aim of this study was to develop a method to identify SHetA2 binding proteins in cancer cells. A known metabolite of SHetA2 that has a hydroxyl group available for attachment was synthesized and conjugated to a linker for attachment to a magnetic microsphere. SHetA2-conjugated magnetic microspheres and unconjugated magnetic microspheres were separately incubated with aliquots of a whole cell protein extract from the A2780 human ovarian cancer cell line. After washing away non-specifically bound proteins with the protein extraction buffer, SHetA2-binding proteins were eluted with an excess of free SHetA2. In two independent experiments, an SDS gel band of about 72 kDa was present at differential levels in wells of eluent from SHetA2-microspheres in comparison to wells of eluent from unconjugated microspheres. Mass spectrometry analysis of the bands (QStar) and straight eluents (Orbitrap) identified mortalin (HSPA9) to be present in the eluent from SHetA2-microspheres and not in eluent from unconjugated microspheres. Co-immunoprecipitation experiments demonstrated that SHetA2 interfered with mortalin binding to p53 and p66 Src homologous-collagen homologue (p66shc) inside cancer cells. Mortalin and SHetA2 conflictingly regulate the same molecules involved in mitochondria-mediated intrinsic apoptosis. The results validate the power of this protocol for revealing drug targets.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Dimetil solfossido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, for molecular biology
Sigma-Aldrich
Dimetil solfossido, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimetil solfossido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Dimetil solfossido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimetil solfossido, anhydrous, ≥99.9%
Sigma-Aldrich
Dimetil solfossido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Acido formico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Dimetil solfossido, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Acido formico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Dimetil solfossido, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%