Accéder au contenu
Merck
Toutes les photos(2)

Key Documents

451649

Sigma-Aldrich

Iron(III) chloride

greener alternative

anhydrous, powder, ≥99.99% trace metals basis

Synonyme(s) :

Ferric chloride, Iron trichloride, Molysite

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
FeCl3
Numéro CAS:
Poids moléculaire :
162.20
Numéro CE :
Numéro MDL:
Code UNSPSC :
12352302
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Qualité

anhydrous

Niveau de qualité

Densité de vapeur

5.61 (vs air)

Pression de vapeur

1 mmHg ( 194 °C)

Pureté

≥99.99% trace metals basis

Forme

powder

Pertinence de la réaction

reagent type: catalyst
core: iron

Caractéristiques du produit alternatif plus écologique

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Impuretés

≤100.0 ppm Trace Metal Analysis

Pf

304 °C (lit.)

Application(s)

battery manufacturing

Autre catégorie plus écologique

Chaîne SMILES 

Cl[Fe](Cl)Cl

InChI

1S/3ClH.Fe/h3*1H;/q;;;+3/p-3

Clé InChI

RBTARNINKXHZNM-UHFFFAOYSA-K

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Iron(III) chloride is brownish to black crystalline solid that is highly soluble in water. As a moderately strong Lewis acid, it highly reactive with bases and capable of forming complex ions. It is widely used as a iron precursor in the field of catalysis, solar cells and batteries.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Application

Iron(III) chloride can be used:
  • As a precursor to fabricate nano-sized Fe-N-C catalysts for proton exchange membrane(PEM) fuel cells. FeCl3 iron precursor, helps to achieve the lowest charge transfer resistance and high peak power density.
  • As an oxidant to prepare FeOCl@PPy cathode materials for Li-ion batteries with good cycling stability.
  • As a precursor to fabricate amorphous multifunctional am-Fe–Bi/NF electrode for rechargeable Zinc-air batteries.
  • To synthesize Fe3O4@nanocellulose/TiCl nano fillers for dye-sensitized solar cells to reduce the crystallinity of the polymer.

The vapor-phase co-reductions with other metal halides by hydrogen results in finely divided intermetallics with applications as structural materials or compounds with useful thermoelectric, magnetic, and oxidation-resitance properties.

À utiliser avec

Pictogrammes

CorrosionExclamation mark

Mention d'avertissement

Danger

Mentions de danger

Classification des risques

Acute Tox. 4 Oral - Eye Dam. 1 - Met. Corr. 1 - Skin Irrit. 2

Code de la classe de stockage

8B - Non-combustible corrosive hazardous materials

Classe de danger pour l'eau (WGK)

WGK 1

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable

Équipement de protection individuelle

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Enhancing graphene/CNT based electrochemical detection using magneto-nanobioprobes.
Jiang M, et al.
Material Matters, 2, 877-883 (2012)
Priyanka Sharma et al.
Scientific reports, 2, 877-877 (2012-11-21)
Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids
Photoredox chemistry of iron (III) chloride and iron (III) perchlorate in aqueous media. A comparative study.
David F and David PG.
The Journal of Physical Chemistry, 80(6), 579-583 (1976)
Abdelwareth A O Sarhan et al.
Chemical Society reviews, 38(9), 2730-2744 (2009-08-20)
In this critical review, the use of iron(III) chloride in oxidative C-C couplings of arenes and related unsaturated compounds is presented and reviewed. The approach allows highly selective dimerisations of phenol derivatives, naphthols, and heterocyclic compounds. Sequential couplings give access
Chen-Yu Chen et al.
Clinica chimica acta; international journal of clinical chemistry, 438, 337-341 (2014-10-05)
Insulin-like growth factor binding protein-1 (IGFBP-1) constitutes a subgroup of the insulin-like growth factor binding protein systems, and its concentration in amniotic fluid is 100-1000 times higher than the concentration in other body fluids. The aim of this study was

Articles

Noble-metal nanostructures are widely used in a variety of applications ranging from catalysis to electronics, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), and biomedical research.

Oxidation and reduction reactions are some of the most common transformations encountered in organic synthesis

Lithium-Ion Battery Performance: Dependence on Material Synthesis and Post‑Treatment Methods

We presents an article about a micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization. RAFT (Reversible Addition/Fragmentation Chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Afficher tout

Protocoles

Sigma-Aldrich presents an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

Sigma-Aldrich presents an article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique