Direkt zum Inhalt
Merck
  • Proteomic Identification of Target Proteins of Thiodigalactoside in White Adipose Tissue from Diet-Induced Obese Rats.

Proteomic Identification of Target Proteins of Thiodigalactoside in White Adipose Tissue from Diet-Induced Obese Rats.

International journal of molecular sciences (2015-06-30)
Hilal Ahmad Parray, Jong Won Yun
ZUSAMMENFASSUNG

Previously, galectin-1 (GAL1) was found to be up-regulated in obesity-prone subjects, suggesting that use of a GAL1 inhibitor could be a novel therapeutic approach for treatment of obesity. We evaluated thiodigalactoside (TDG) as a potent inhibitor of GAL1 and identified target proteins of TDG by performing comparative proteome analysis of white adipose tissue (WAT) from control and TDG-treated rats fed a high fat diet (HFD) using two dimensional gel electrophoresis (2-DE) combined with MALDI-TOF-MS. Thirty-two spots from a total of 356 matched spots showed differential expression between control and TDG-treated rats, as identified by peptide mass fingerprinting. These proteins were categorized into groups such as carbohydrate metabolism, tricarboxylic acid (TCA) cycle, signal transduction, cytoskeletal, and mitochondrial proteins based on functional analysis using Protein Annotation Through Evolutionary Relationship (PANTHER) and Database for Annotation, Visualization, Integrated Discovery (DAVID) classification. One of the most striking findings of this study was significant changes in Carbonic anhydrase 3 (CA3), Voltage-dependent anion channel 1 (VDAC1), phosphatidylethanolamine-binding protein 1 (PEBP1), annexin A2 (ANXA2) and lactate dehydrogenase A chain (LDHA) protein levels between WAT from control and TDG-treated groups. In addition, we confirmed increased expression of thermogenic proteins as well as reduced expression of lipogenic proteins in response to TDG treatment. These results suggest that TDG may effectively prevent obesity, and TDG-responsive proteins can be used as novel target proteins for obesity treatment.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Glycerin, for molecular biology, ≥99.0%
Sigma-Aldrich
Natriumdodecylsulfat, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Natriumdodecylsulfat, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Jodacetamid, Single use vial of 56 mg
Sigma-Aldrich
Jodacetamid, BioUltra
Sigma-Aldrich
Harnstoff, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
DL-Dithiothreitol -Lösung, BioUltra, for molecular biology, ~1 M in H2O
Supelco
DL-Dithiothreitol -Lösung, 1 M in H2O
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Jodacetamid, ≥99% (NMR), crystalline
Sigma-Aldrich
Harnstoff -Lösung, BioUltra, ~8 M in H2O
Supelco
Harnstoff, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Glycerin -Lösung, 83.5-89.5% (T)
Sigma-Aldrich
Glycerin, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerin, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Natriumdodecylsulfat, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Glycerin, FCC, FG
Sigma-Aldrich
Harnstoff, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Supelco
Natriumdodecylsulfat, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Harnstoff, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Natriumdodecylsulfat, ≥98.0% (GC)
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Harnstoff, suitable for electrophoresis
Sigma-Aldrich
Natriumdodecylsulfat, ACS reagent, ≥99.0%
Sigma-Aldrich
Harnstoff, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Glycerin, ≥99.5%
SAFC
Jodacetamid
Sigma-Aldrich
Harnstoff, meets USP testing specifications
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis